On the choice of the splitting ratio for the split likelihood ratio test

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Electronic Journal of Statistics Pub Date : 2022-01-01 DOI:10.1214/22-ejs2099
David Strieder, M. Drton
{"title":"On the choice of the splitting ratio for the split likelihood ratio test","authors":"David Strieder, M. Drton","doi":"10.1214/22-ejs2099","DOIUrl":null,"url":null,"abstract":"The recently introduced framework of universal inference provides a new approach to constructing hypothesis tests and confidence regions that are valid in finite samples and do not rely on any specific regularity assumptions on the underlying statistical model. At the core of the methodology is a split likelihood ratio statistic, which is formed under data splitting and compared to a cleverly selected universal critical value. As this critical value can be very conservative, it is interesting to mitigate the potential loss of power by careful choice of the ratio according to which data are split. Motivated by this problem, we study the split likelihood ratio test under local alternatives and introduce the resulting class of noncentral split chi-square distributions. We investigate the properties of this new class of distributions and use it to numerically examine and propose an optimal choice of the data splitting ratio for tests of composite hypotheses of different dimensions.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ejs2099","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 6

Abstract

The recently introduced framework of universal inference provides a new approach to constructing hypothesis tests and confidence regions that are valid in finite samples and do not rely on any specific regularity assumptions on the underlying statistical model. At the core of the methodology is a split likelihood ratio statistic, which is formed under data splitting and compared to a cleverly selected universal critical value. As this critical value can be very conservative, it is interesting to mitigate the potential loss of power by careful choice of the ratio according to which data are split. Motivated by this problem, we study the split likelihood ratio test under local alternatives and introduce the resulting class of noncentral split chi-square distributions. We investigate the properties of this new class of distributions and use it to numerically examine and propose an optimal choice of the data splitting ratio for tests of composite hypotheses of different dimensions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于分裂似然比检验中分裂比的选择
最近引入的通用推理框架提供了一种新的方法来构建在有限样本中有效的假设检验和置信区,并且不依赖于对基础统计模型的任何特定规则性假设。该方法的核心是分裂似然比统计,它是在数据分裂下形成的,并与巧妙选择的通用临界值进行比较。由于这个临界值可能非常保守,因此通过仔细选择数据分割的比率来减轻潜在的功率损失是很有趣的。受此问题的启发,我们研究了局部备选方案下的分裂似然比检验,并引入了由此产生的一类非中心分裂卡方分布。我们研究了这类新分布的性质,并用它对不同维度的复合假设进行了数值检验,提出了数据分割率的最优选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electronic Journal of Statistics
Electronic Journal of Statistics STATISTICS & PROBABILITY-
CiteScore
1.80
自引率
9.10%
发文量
100
审稿时长
3 months
期刊介绍: The Electronic Journal of Statistics (EJS) publishes research articles and short notes on theoretical, computational and applied statistics. The journal is open access. Articles are refereed and are held to the same standard as articles in other IMS journals. Articles become publicly available shortly after they are accepted.
期刊最新文献
Direct Bayesian linear regression for distribution-valued covariates. Statistical inference via conditional Bayesian posteriors in high-dimensional linear regression Subnetwork estimation for spatial autoregressive models in large-scale networks Tests for high-dimensional single-index models Variable selection for single-index varying-coefficients models with applications to synergistic G × E interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1