On Breathing Pattern Information in Synthetic Speech

Z. Mostaani, M. Magimai.-Doss
{"title":"On Breathing Pattern Information in Synthetic Speech","authors":"Z. Mostaani, M. Magimai.-Doss","doi":"10.21437/interspeech.2022-10271","DOIUrl":null,"url":null,"abstract":"The respiratory system is an integral part of human speech production. As a consequence, there is a close relation between respiration and speech signal, and the produced speech signal carries breathing pattern related information. Speech can also be generated using speech synthesis systems. In this paper, we investigate whether synthetic speech carries breathing pattern related information in the same way as natural human speech. We address this research question in the framework of logical-access presentation attack detection using embeddings extracted from neural networks pre-trained for speech breathing pattern estimation. Our studies on ASVSpoof 2019 challenge data show that there is a clear distinction between the extracted breathing pattern embedding of natural human speech and syn-thesized speech, indicating that speech synthesis systems tend to not carry breathing pattern related information in the same way as human speech. Whilst, this is not the case with voice conversion of natural human speech.","PeriodicalId":73500,"journal":{"name":"Interspeech","volume":"1 1","pages":"2768-2772"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interspeech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/interspeech.2022-10271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The respiratory system is an integral part of human speech production. As a consequence, there is a close relation between respiration and speech signal, and the produced speech signal carries breathing pattern related information. Speech can also be generated using speech synthesis systems. In this paper, we investigate whether synthetic speech carries breathing pattern related information in the same way as natural human speech. We address this research question in the framework of logical-access presentation attack detection using embeddings extracted from neural networks pre-trained for speech breathing pattern estimation. Our studies on ASVSpoof 2019 challenge data show that there is a clear distinction between the extracted breathing pattern embedding of natural human speech and syn-thesized speech, indicating that speech synthesis systems tend to not carry breathing pattern related information in the same way as human speech. Whilst, this is not the case with voice conversion of natural human speech.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
合成语音中的呼吸模式信息
呼吸系统是人类语言产生的一个组成部分。因此,呼吸与语音信号之间存在着密切的联系,产生的语音信号携带着与呼吸方式相关的信息。语音也可以使用语音合成系统生成。在本文中,我们研究了合成语音是否以与人类自然语音相同的方式携带呼吸模式相关信息。我们在逻辑访问表示攻击检测的框架中解决了这个研究问题,使用从语音呼吸模式估计预训练的神经网络中提取的嵌入。我们对ASVSpoof 2019挑战数据的研究表明,提取的人类自然语音和合成语音的呼吸模式嵌入之间存在明显的区别,这表明语音合成系统往往不像人类语音那样携带呼吸模式相关信息。然而,自然人类语言的语音转换并非如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Remote Assessment for ALS using Multimodal Dialog Agents: Data Quality, Feasibility and Task Compliance. Pronunciation modeling of foreign words for Mandarin ASR by considering the effect of language transfer VCSE: Time-Domain Visual-Contextual Speaker Extraction Network Induce Spoken Dialog Intents via Deep Unsupervised Context Contrastive Clustering Nasal Coda Loss in the Chengdu Dialect of Mandarin: Evidence from RT-MRI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1