{"title":"Experimental evaluation of composite and non‐composite columns and braces in special concentrically braced frames","authors":"S. Ebrahimi, S. R. Mirghaderi, S. M. Zahrai","doi":"10.1002/tal.2002","DOIUrl":null,"url":null,"abstract":"Hollow structural section (HSS) and concrete‐filled tube (CFT) cross‐sections have been widely employed in the columns and braces of special concentrically braced frames (SCBFs). Square‐HSS cross‐section widely used in multistory frames is filled with concrete and converted to square‐CFT cross‐section to enhance the behavior of this cross‐section. However, some investigations indicated that circular‐HSS cross‐section filled with concrete (circular‐CFT) showed better behavior in comparison with square‐CFT cross‐section due to more uniform and larger concrete confinement in circular‐CFT cross‐section. The current study was experimentally undertaken to evaluate (1) the seismic performance and the global and local hysteresis responses of HSS and CFT members with various cross‐section shapes from initial elastic range to collapse in the system level of multistory SCBFs, (2) the behavioral differences between square cross‐section and circular cross‐section, and (3) the behavioral differences between HSS cross‐sections and CFT cross‐sections employed in the columns and braces of SCBFs. Four full‐scale one‐bay, two‐story SCBFs with four various cross‐sections, namely, square‐HSS, circular‐HSS, square‐CFT, and circular‐CFT, for columns and braces were subjected to cyclic lateral loading. Evaluating base shear–roof drift hysteretic loops of SCBF specimens demonstrated that SCBF specimens with CFT columns and braces (CFT‐SCBFs) experienced respectively around 107%, 58%, 28%, and 152% higher stiffness, post‐yielding and post‐buckling strengths, ductility, and energy dissipation capacity than SCBF specimens with HSS columns and braces (HSS‐SCBF). In addition, the experimental observations indicated that CFT braces experienced local buckling initiation, crack initiation, and fracture at respectively 2.22, 2.35, and 2.32 times of roof drifts of those exhibited by HSS braces. Moreover, assessing braces with various cross‐sections indicated that CFT braces showed an increase in compression strength, post‐buckling strength, compression axial deformation, and out‐of‐plane buckling approximately by 83%, 152%, 127%, and 100%, respectively, in comparison with HSS braces. Finally, square‐HSS/CFT braces sustained rupture propagation better than circular‐HSS/CFT braces.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Design of Tall and Special Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/tal.2002","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Hollow structural section (HSS) and concrete‐filled tube (CFT) cross‐sections have been widely employed in the columns and braces of special concentrically braced frames (SCBFs). Square‐HSS cross‐section widely used in multistory frames is filled with concrete and converted to square‐CFT cross‐section to enhance the behavior of this cross‐section. However, some investigations indicated that circular‐HSS cross‐section filled with concrete (circular‐CFT) showed better behavior in comparison with square‐CFT cross‐section due to more uniform and larger concrete confinement in circular‐CFT cross‐section. The current study was experimentally undertaken to evaluate (1) the seismic performance and the global and local hysteresis responses of HSS and CFT members with various cross‐section shapes from initial elastic range to collapse in the system level of multistory SCBFs, (2) the behavioral differences between square cross‐section and circular cross‐section, and (3) the behavioral differences between HSS cross‐sections and CFT cross‐sections employed in the columns and braces of SCBFs. Four full‐scale one‐bay, two‐story SCBFs with four various cross‐sections, namely, square‐HSS, circular‐HSS, square‐CFT, and circular‐CFT, for columns and braces were subjected to cyclic lateral loading. Evaluating base shear–roof drift hysteretic loops of SCBF specimens demonstrated that SCBF specimens with CFT columns and braces (CFT‐SCBFs) experienced respectively around 107%, 58%, 28%, and 152% higher stiffness, post‐yielding and post‐buckling strengths, ductility, and energy dissipation capacity than SCBF specimens with HSS columns and braces (HSS‐SCBF). In addition, the experimental observations indicated that CFT braces experienced local buckling initiation, crack initiation, and fracture at respectively 2.22, 2.35, and 2.32 times of roof drifts of those exhibited by HSS braces. Moreover, assessing braces with various cross‐sections indicated that CFT braces showed an increase in compression strength, post‐buckling strength, compression axial deformation, and out‐of‐plane buckling approximately by 83%, 152%, 127%, and 100%, respectively, in comparison with HSS braces. Finally, square‐HSS/CFT braces sustained rupture propagation better than circular‐HSS/CFT braces.
期刊介绍:
The Structural Design of Tall and Special Buildings provides structural engineers and contractors with a detailed written presentation of innovative structural engineering and construction practices for tall and special buildings. It also presents applied research on new materials or analysis methods that can directly benefit structural engineers involved in the design of tall and special buildings. The editor''s policy is to maintain a reasonable balance between papers from design engineers and from research workers so that the Journal will be useful to both groups. The problems in this field and their solutions are international in character and require a knowledge of several traditional disciplines and the Journal will reflect this.
The main subject of the Journal is the structural design and construction of tall and special buildings. The basic definition of a tall building, in the context of the Journal audience, is a structure that is equal to or greater than 50 meters (165 feet) in height, or 14 stories or greater. A special building is one with unique architectural or structural characteristics.
However, manuscripts dealing with chimneys, water towers, silos, cooling towers, and pools will generally not be considered for review. The journal will present papers on new innovative structural systems, materials and methods of analysis.