{"title":"Understanding Tire Dynamic Characteristics for Vehicle Dynamics Ride Using Simulation Methods","authors":"Y. Siramdasu, Kejing Li, R. Wheeler","doi":"10.2346/TIRE.19.180196","DOIUrl":null,"url":null,"abstract":"\n The dynamic characteristics of a tire are studied by simulating its rolling over a cleat and observing the effect on in-plane rigid belt vibration modes. Three modeling approaches are used to understand various tire design parameters affecting the tire dynamics relevant for vehicle ride performance. First, a simplified three-degree-of-freedom rigid ring model is used for fundamental understanding of these modes. Next, a detailed finite element model accounting for component compliances is used for studying the sensitivity of the modes to most common design parameter variations employed in tire development. Finally, to study these tire design changes in operation, vehicle simulations using CarSim and FTire models are performed. FTire model parameters corresponding to tire design parameters are adjusted accordingly. Observations are reported of the effects of tire design parameters on cleat responses and on correlation of results between finite element and FTire models.","PeriodicalId":44601,"journal":{"name":"Tire Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tire Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2346/TIRE.19.180196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1
Abstract
The dynamic characteristics of a tire are studied by simulating its rolling over a cleat and observing the effect on in-plane rigid belt vibration modes. Three modeling approaches are used to understand various tire design parameters affecting the tire dynamics relevant for vehicle ride performance. First, a simplified three-degree-of-freedom rigid ring model is used for fundamental understanding of these modes. Next, a detailed finite element model accounting for component compliances is used for studying the sensitivity of the modes to most common design parameter variations employed in tire development. Finally, to study these tire design changes in operation, vehicle simulations using CarSim and FTire models are performed. FTire model parameters corresponding to tire design parameters are adjusted accordingly. Observations are reported of the effects of tire design parameters on cleat responses and on correlation of results between finite element and FTire models.
期刊介绍:
Tire Science and Technology is the world"s leading technical journal dedicated to tires. The Editor publishes original contributions that address the development and application of experimental, analytical, or computational science in which the tire figures prominently. Review papers may also be published. The journal aims to assure its readers authoritative, critically reviewed articles and the authors accessibility of their work in the permanent literature. The journal is published quarterly by the Tire Society, Inc., an Ohio not-for-profit corporation whose objective is to increase and disseminate knowledge of the science and technology of tires.