L. N. Hugen, Eduardo Miranda, Allan de Amorim dos Santos, R. C. Lago, L. Silva, G. Tonoli, S. Ferreira
{"title":"Effect of cellulose micro/nanofibrils and carboxylated styrene butadiene rubber coating on sack kraft paper","authors":"L. N. Hugen, Eduardo Miranda, Allan de Amorim dos Santos, R. C. Lago, L. Silva, G. Tonoli, S. Ferreira","doi":"10.1515/npprj-2023-0016","DOIUrl":null,"url":null,"abstract":"Abstract The main objective of this research is to evaluate the influence of coating based on cellulose micro/nanofibrils (CMF) and carboxylated styrene butadiene rubber (XSBR) on sack kraft paper, for possible use in packaging. Filmogenic solutions were applied manually as a coating on sack kraft paper. These solutions were prepared by suspensions of CMF 1.5 % w/v with the addition of different content of XSBR (0, 2, 10, and 20 % about the total mass of CMF). Uncoated sack kraft paper was used as control. Films were obtained by casting and characterized physically, morphologically, and mechanically. The results demonstrated that XSBR and CMF composite suspension showed good performance as a coating on sack kraft paper. The formation of homogeneous structures well distributed on paper can be observed on scanning electron microscope images. Coatings containing XSBR presented a smoother surface, less porosity and hydrophilicity, and a greater coalescence, with good properties of air resistance and water vapor permeability. However, regarding mechanical properties, there were no improvements in coated papers. Therefore, the present study contributed information on the development of more flexible and hydrophobic cellulosic papers for possible applications in the industrial packaging sector.","PeriodicalId":19315,"journal":{"name":"Nordic Pulp & Paper Research Journal","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nordic Pulp & Paper Research Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/npprj-2023-0016","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The main objective of this research is to evaluate the influence of coating based on cellulose micro/nanofibrils (CMF) and carboxylated styrene butadiene rubber (XSBR) on sack kraft paper, for possible use in packaging. Filmogenic solutions were applied manually as a coating on sack kraft paper. These solutions were prepared by suspensions of CMF 1.5 % w/v with the addition of different content of XSBR (0, 2, 10, and 20 % about the total mass of CMF). Uncoated sack kraft paper was used as control. Films were obtained by casting and characterized physically, morphologically, and mechanically. The results demonstrated that XSBR and CMF composite suspension showed good performance as a coating on sack kraft paper. The formation of homogeneous structures well distributed on paper can be observed on scanning electron microscope images. Coatings containing XSBR presented a smoother surface, less porosity and hydrophilicity, and a greater coalescence, with good properties of air resistance and water vapor permeability. However, regarding mechanical properties, there were no improvements in coated papers. Therefore, the present study contributed information on the development of more flexible and hydrophobic cellulosic papers for possible applications in the industrial packaging sector.
期刊介绍:
Nordic Pulp & Paper Research Journal (NPPRJ) is a peer-reviewed, international scientific journal covering to-date science and technology research in the areas of wood-based biomass:
Pulp and paper: products and processes
Wood constituents: characterization and nanotechnologies
Bio-refining, recovery and energy issues
Utilization of side-streams from pulping processes
Novel fibre-based, sustainable and smart materials.
The editors and the publisher are committed to high quality standards and rapid handling of the peer review and publication processes.
Topics
Cutting-edge topics such as, but not limited to, the following:
Biorefining, energy issues
Wood fibre characterization and nanotechnology
Side-streams and new products from wood pulping processes
Mechanical pulping
Chemical pulping, recovery and bleaching
Paper technology
Paper chemistry and physics
Coating
Paper-ink-interactions
Recycling
Environmental issues.