Application of ionic liquids in CO2 capture and electrochemical reduction: A review

IF 6.4 3区 环境科学与生态学 Q2 ENERGY & FUELS Carbon Resources Conversion Pub Date : 2023-06-01 DOI:10.1016/j.crcon.2023.02.003
Xiaowei An , Peifen Wang , Xuli Ma , Xiao Du , Xiaogang Hao , Ziyuan Yang , Guoqing Guan
{"title":"Application of ionic liquids in CO2 capture and electrochemical reduction: A review","authors":"Xiaowei An ,&nbsp;Peifen Wang ,&nbsp;Xuli Ma ,&nbsp;Xiao Du ,&nbsp;Xiaogang Hao ,&nbsp;Ziyuan Yang ,&nbsp;Guoqing Guan","doi":"10.1016/j.crcon.2023.02.003","DOIUrl":null,"url":null,"abstract":"<div><p>As a new type of green solvent with non-volatility, high thermal stability, high conductivity and various adjustable properties, ionic liquid (IL) has been widely used in the capture and electrochemical reduction of carbon dioxide (CO<sub>2</sub>). To date, many studies have been made to investigate CO<sub>2</sub> capture by using different types of ILs and CO<sub>2</sub> electrochemical reduction (CO<sub>2</sub>ER) with ILs as either electrolyte or other catalytic active components. Some structure–activity relationships between the structure and adsorption or catalytic properties of ILs have been found. Herein, the absorption performances and mechanisms of conventional ILs, amino-functionalized ILs, non-amino functionalized ILs and supported ILs for CO<sub>2</sub> capture, as well as the performances and action mechanisms of ILs as the electrolyte, electrolyte additive, and/or electrode modifier in the process of CO<sub>2</sub>ER are summarized. Many researches indicate that the unique interaction between the anion or cation of IL and CO<sub>2</sub> has a significant contribution to promote the absorption and conversion of CO<sub>2</sub>. However, the ILs used for CO<sub>2</sub> capture and electrochemical reduction should be further explored. Especially, a more in-depth investigation of the adsorption and catalytic mechanisms with the help of quantum chemical calculation, molecular simulation, and <em>in situ</em> characterization techniques is necessary. It is expected to design and develop more efficient ILs used for CO<sub>2</sub> capture and conversion on a large scale.</p></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"6 2","pages":"Pages 85-97"},"PeriodicalIF":6.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Resources Conversion","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588913323000133","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 7

Abstract

As a new type of green solvent with non-volatility, high thermal stability, high conductivity and various adjustable properties, ionic liquid (IL) has been widely used in the capture and electrochemical reduction of carbon dioxide (CO2). To date, many studies have been made to investigate CO2 capture by using different types of ILs and CO2 electrochemical reduction (CO2ER) with ILs as either electrolyte or other catalytic active components. Some structure–activity relationships between the structure and adsorption or catalytic properties of ILs have been found. Herein, the absorption performances and mechanisms of conventional ILs, amino-functionalized ILs, non-amino functionalized ILs and supported ILs for CO2 capture, as well as the performances and action mechanisms of ILs as the electrolyte, electrolyte additive, and/or electrode modifier in the process of CO2ER are summarized. Many researches indicate that the unique interaction between the anion or cation of IL and CO2 has a significant contribution to promote the absorption and conversion of CO2. However, the ILs used for CO2 capture and electrochemical reduction should be further explored. Especially, a more in-depth investigation of the adsorption and catalytic mechanisms with the help of quantum chemical calculation, molecular simulation, and in situ characterization techniques is necessary. It is expected to design and develop more efficient ILs used for CO2 capture and conversion on a large scale.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离子液体在CO2捕集和电化学还原中的应用综述
离子液体作为一种无挥发性、高热稳定性、高电导率和多种可调性质的新型绿色溶剂,在二氧化碳的捕获和电化学还原中得到了广泛的应用。迄今为止,已有许多研究通过使用不同类型的il和以il作为电解质或其他催化活性成分的CO2电化学还原(CO2ER)来研究CO2捕获。已经发现了il的结构与吸附或催化性能之间存在一定的构效关系。本文综述了传统液化油、氨基功能化液化油、非氨基功能化液化油和负载型液化油在CO2捕集中的吸收性能和机理,以及液化油作为CO2ER过程中的电解质、电解质添加剂和/或电极改性剂的性能和作用机理。许多研究表明,IL的阴离子或阳离子与CO2的独特相互作用对促进CO2的吸收和转化有重要贡献。然而,用于CO2捕集和电化学还原的il还有待进一步探索。特别是,有必要借助量子化学计算、分子模拟和原位表征技术对吸附和催化机理进行更深入的研究。预计将设计和开发用于大规模捕获和转换二氧化碳的更有效的ILs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbon Resources Conversion
Carbon Resources Conversion Materials Science-Materials Science (miscellaneous)
CiteScore
9.90
自引率
11.70%
发文量
36
审稿时长
10 weeks
期刊介绍: Carbon Resources Conversion (CRC) publishes fundamental studies and industrial developments regarding relevant technologies aiming for the clean, efficient, value-added, and low-carbon utilization of carbon-containing resources as fuel for energy and as feedstock for materials or chemicals from, for example, fossil fuels, biomass, syngas, CO2, hydrocarbons, and organic wastes via physical, thermal, chemical, biological, and other technical methods. CRC also publishes scientific and engineering studies on resource characterization and pretreatment, carbon material innovation and production, clean technologies related to carbon resource conversion and utilization, and various process-supporting technologies, including on-line or off-line measurement and monitoring, modeling, simulations focused on safe and efficient process operation and control, and process and equipment optimization.
期刊最新文献
Outside Front Cover Outside Back Cover Developments and challenges on enhancement of photocatalytic CO2 reduction through photocatalysis Outside Front Cover Outside Back Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1