{"title":"Facing the Unknown Unknowns of Data Analysis","authors":"E. Wagenmakers, A. Sarafoglou, B. Aczel","doi":"10.1177/09637214231168565","DOIUrl":null,"url":null,"abstract":"Empirical claims are inevitably associated with uncertainty, and a major goal of data analysis is therefore to quantify that uncertainty. Recent work has revealed that most uncertainty may lie not in what is usually reported (e.g., p value, confidence interval, or Bayes factor) but in what is left unreported (e.g., how the experiment was designed, whether the conclusion is robust under plausible alternative analysis protocols, and how credible the authors believe their hypothesis to be). This suggests that the rigorous evaluation of an empirical claim involves an assessment of the entire empirical cycle and that scientific progress benefits from radical transparency in planning, data management, inference, and reporting. We summarize recent methodological developments in this area and conclude that the focus on a single statistical analysis is myopic. Sound statistical analysis is important, but social scientists may gain more insight by taking a broad view on uncertainty and by working to reduce the “unknown unknowns” that still plague reporting practice.","PeriodicalId":10802,"journal":{"name":"Current Directions in Psychological Science","volume":"32 1","pages":"362 - 368"},"PeriodicalIF":7.4000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Directions in Psychological Science","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/09637214231168565","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Empirical claims are inevitably associated with uncertainty, and a major goal of data analysis is therefore to quantify that uncertainty. Recent work has revealed that most uncertainty may lie not in what is usually reported (e.g., p value, confidence interval, or Bayes factor) but in what is left unreported (e.g., how the experiment was designed, whether the conclusion is robust under plausible alternative analysis protocols, and how credible the authors believe their hypothesis to be). This suggests that the rigorous evaluation of an empirical claim involves an assessment of the entire empirical cycle and that scientific progress benefits from radical transparency in planning, data management, inference, and reporting. We summarize recent methodological developments in this area and conclude that the focus on a single statistical analysis is myopic. Sound statistical analysis is important, but social scientists may gain more insight by taking a broad view on uncertainty and by working to reduce the “unknown unknowns” that still plague reporting practice.
期刊介绍:
Current Directions in Psychological Science publishes reviews by leading experts covering all of scientific psychology and its applications. Each issue of Current Directions features a diverse mix of reports on various topics such as language, memory and cognition, development, the neural basis of behavior and emotions, various aspects of psychopathology, and theory of mind. These articles allow readers to stay apprised of important developments across subfields beyond their areas of expertise and bodies of research they might not otherwise be aware of. The articles in Current Directions are also written to be accessible to non-experts, making them ideally suited for use in the classroom as teaching supplements.