Improved chain-ratio type estimator for population total in double sampling

IF 1.4 3区 社会学 Q3 DEMOGRAPHY Mathematical Population Studies Pub Date : 2019-06-19 DOI:10.1080/08898480.2019.1626635
Saurav Guha, Hukum Chandra
{"title":"Improved chain-ratio type estimator for population total in double sampling","authors":"Saurav Guha, Hukum Chandra","doi":"10.1080/08898480.2019.1626635","DOIUrl":null,"url":null,"abstract":"ABSTRACT Chain-ratio estimators are often used to improve the efficiency of the estimation of the population total or the mean using two auxiliary variables, available in two different phases. An improved chain-ratio estimator for the population total based on double sampling is proposed when auxiliary information is available for the first variable and not available for the second variable. The bias and the mean square error of this estimator are obtained for a large sample. Empirical evaluations using both model-based and design-based simulations show that the proposed estimator performs better than the ratio, the regression, and the difference estimators.","PeriodicalId":49859,"journal":{"name":"Mathematical Population Studies","volume":"27 1","pages":"216 - 231"},"PeriodicalIF":1.4000,"publicationDate":"2019-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08898480.2019.1626635","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Population Studies","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1080/08898480.2019.1626635","RegionNum":3,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEMOGRAPHY","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT Chain-ratio estimators are often used to improve the efficiency of the estimation of the population total or the mean using two auxiliary variables, available in two different phases. An improved chain-ratio estimator for the population total based on double sampling is proposed when auxiliary information is available for the first variable and not available for the second variable. The bias and the mean square error of this estimator are obtained for a large sample. Empirical evaluations using both model-based and design-based simulations show that the proposed estimator performs better than the ratio, the regression, and the difference estimators.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进的链式双抽样总体估计方法
链比率估计量通常用于使用两个不同阶段可用的辅助变量来提高总体总数或平均值估计的效率。当辅助信息对第一个变量可用而对第二个变量不可用时,提出了一种基于双采样的改进的总体链比率估计器。对于大样本,获得了该估计器的偏差和均方误差。使用基于模型和基于设计的模拟进行的经验评估表明,所提出的估计器的性能优于比率、回归和差分估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical Population Studies
Mathematical Population Studies 数学-数学跨学科应用
CiteScore
3.20
自引率
11.10%
发文量
7
审稿时长
>12 weeks
期刊介绍: Mathematical Population Studies publishes carefully selected research papers in the mathematical and statistical study of populations. The journal is strongly interdisciplinary and invites contributions by mathematicians, demographers, (bio)statisticians, sociologists, economists, biologists, epidemiologists, actuaries, geographers, and others who are interested in the mathematical formulation of population-related questions. The scope covers both theoretical and empirical work. Manuscripts should be sent to Manuscript central for review. The editor-in-chief has final say on the suitability for publication.
期刊最新文献
Researching algorithm awareness: methodological approaches to investigate how people perceive, know, and interact with algorithms Fractional Lindley distribution generated by time scale theory, with application to discrete-time lifetime data Estimating the structure by age and sex of the US sexually active population Optimizing criterion for the upper limit of the signal response of brain neurons Optimal estimators of the population mean of a skewed distribution using auxiliary variables in median ranked-set sampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1