Induction heating response of iron oxide nanoparticles in varyingly viscous mediums with prediction of brownian heating contribution

IF 2.7 3区 工程技术 Q2 ENGINEERING, MECHANICAL Nanoscale and Microscale Thermophysical Engineering Pub Date : 2020-08-12 DOI:10.1080/15567265.2020.1806968
J. Tompkins, D. Huitink
{"title":"Induction heating response of iron oxide nanoparticles in varyingly viscous mediums with prediction of brownian heating contribution","authors":"J. Tompkins, D. Huitink","doi":"10.1080/15567265.2020.1806968","DOIUrl":null,"url":null,"abstract":"ABSTRACT This study examines the effects of nanoparticle concentration, magnetic field frequency, and carrier fluid viscosity on the induction heating response of nanofluids exposed to an alternating magnetic field. Uncapped iron-oxide nanoparticles with a mean diameter 14.42 nm were sonically dispersed into mixtures of deionized water and ethylene glycol (WEG) as well as highly viscous oil blends. The resulting nanofluids were exposed to an alternating magnetic field with a strength of 72.6 kA/m at frequencies of 217, 303, and 397 kHz with the heating response characterized calorimetrically through the specific absorption rate (SAR). Concentration and frequency effects mirror those found in literature with SAR reduction and enhancement, respectively. Additionally, SAR output is characterized across a wide range of viscosities showing a consistent decrease in heating output as viscosity increases through the WEG regime, however, the SAR was found to be relatively consistent across the oil blends. The effects of particle aggregation were measured through dynamic light scattering denoting particle clustering as a function of viscosity. Viscosity trends with SAR are accounted for by the viscous inhibition of particles reducing their Brownian heating, as well as clustering effects potentially inhibiting heat production in the low viscosity range where aggregation is pronounced. Lastly, a model predicting the Brownian contribution to heating as a function of frequency, concentration, and viscosity is proposed. This study provides a broad view of the effects on heating output for suspensions of commercially available iron oxide nanoparticles for several concentrations and field frequencies across an expansive range of viscosity.","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"24 1","pages":"123 - 137"},"PeriodicalIF":2.7000,"publicationDate":"2020-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15567265.2020.1806968","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2020.1806968","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT This study examines the effects of nanoparticle concentration, magnetic field frequency, and carrier fluid viscosity on the induction heating response of nanofluids exposed to an alternating magnetic field. Uncapped iron-oxide nanoparticles with a mean diameter 14.42 nm were sonically dispersed into mixtures of deionized water and ethylene glycol (WEG) as well as highly viscous oil blends. The resulting nanofluids were exposed to an alternating magnetic field with a strength of 72.6 kA/m at frequencies of 217, 303, and 397 kHz with the heating response characterized calorimetrically through the specific absorption rate (SAR). Concentration and frequency effects mirror those found in literature with SAR reduction and enhancement, respectively. Additionally, SAR output is characterized across a wide range of viscosities showing a consistent decrease in heating output as viscosity increases through the WEG regime, however, the SAR was found to be relatively consistent across the oil blends. The effects of particle aggregation were measured through dynamic light scattering denoting particle clustering as a function of viscosity. Viscosity trends with SAR are accounted for by the viscous inhibition of particles reducing their Brownian heating, as well as clustering effects potentially inhibiting heat production in the low viscosity range where aggregation is pronounced. Lastly, a model predicting the Brownian contribution to heating as a function of frequency, concentration, and viscosity is proposed. This study provides a broad view of the effects on heating output for suspensions of commercially available iron oxide nanoparticles for several concentrations and field frequencies across an expansive range of viscosity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于布朗加热贡献预测的氧化铁纳米粒子在不同粘性介质中的感应加热响应
摘要本研究考察了纳米颗粒浓度、磁场频率和载液粘度对交变磁场下纳米流体感应加热响应的影响。将平均直径为14.42nm的未包覆氧化铁纳米颗粒超声分散到去离子水和乙二醇(WEG)的混合物以及高粘性油混合物中。将所得纳米流体暴露于强度为72.6kA/m、频率为217303和397kHz的交变磁场中,加热响应通过比吸收率(SAR)进行量热表征。集中效应和频率效应分别反映了文献中SAR降低和增强的情况。此外,SAR输出在大范围的粘度范围内表现出特征,表明随着WEG体系粘度的增加,加热输出持续下降,然而,发现SAR在整个油混合物中相对一致。通过将颗粒聚集表示为粘度的函数的动态光散射来测量颗粒聚集的影响。SAR的粘度趋势是由颗粒的粘性抑制来解释的,该粘性抑制减少了它们的布朗加热,以及在聚集明显的低粘度范围内可能抑制热量产生的聚集效应。最后,提出了一个模型,预测布朗对加热的贡献是频率、浓度和粘度的函数。这项研究为商业上可买到的氧化铁纳米颗粒的悬浮液在不同浓度和场频率下在广阔的粘度范围内对加热输出的影响提供了一个广阔的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale and Microscale Thermophysical Engineering
Nanoscale and Microscale Thermophysical Engineering 工程技术-材料科学:表征与测试
CiteScore
5.90
自引率
2.40%
发文量
12
审稿时长
3.3 months
期刊介绍: Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation. The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as: transport and interactions of electrons, phonons, photons, and spins in solids, interfacial energy transport and phase change processes, microscale and nanoscale fluid and mass transport and chemical reaction, molecular-level energy transport, storage, conversion, reaction, and phase transition, near field thermal radiation and plasmonic effects, ultrafast and high spatial resolution measurements, multi length and time scale modeling and computations, processing of nanostructured materials, including composites, micro and nanoscale manufacturing, energy conversion and storage devices and systems, thermal management devices and systems, microfluidic and nanofluidic devices and systems, molecular analysis devices and systems.
期刊最新文献
Mesoscopic Study on Effective Thermal Conductivity of Aerogel Based on a Modified LBM Thermoelectric Phenomena in a Magnetic Heterostructure with AAH Modulation: Charge and Spin Figure of Merits Coupling of Surface Plasmon Polaritons and Hyperbolic Phonon Polaritons on the Near-Field Radiative Heat Transfer Between Multilayer Graphene/hBN Structures Thermodynamic control the self-assembled formation of vertically aligned nanocomposite thin film Elasto-Thermodiffusive Microtemperature Model Induced by a Mechanical Ramp-Type of Nanoscale Photoexcited Semiconductor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1