Pasting Behavior and Viscoelastic Properties of Fresh, Chilled, and Rehydrated Freeze-Dried Gel Beads from Blends of Tapioca Flour, Soy Flour, and Cane Sugar
Nattagan Chantagith, Natnaree Katkaew, P. Rattanapitigorn
{"title":"Pasting Behavior and Viscoelastic Properties of Fresh, Chilled, and Rehydrated Freeze-Dried Gel Beads from Blends of Tapioca Flour, Soy Flour, and Cane Sugar","authors":"Nattagan Chantagith, Natnaree Katkaew, P. Rattanapitigorn","doi":"10.12982/cmujns.2021.093","DOIUrl":null,"url":null,"abstract":"Abstract An extreme vertices design for a mixture of three components was used to establish the proportions of tapioca flour (50% to 100% w/w), soy flour (0% to 50% w/w), and cane sugar (0% to 10% w/w) mass fractions in a food gel bead system. Thus, nine compositions were prepared and analyzed. The pasting profiles of the mixtures were studied using a Rapid Visco Analyzer. The texture profiles of fresh, chilled, and rehydrated freeze-dried gel beads were studied using a texture analyzer. Increasing the proportion of soy flour in the range of 11.25% to 50.00% w/w decreased the peak viscosity, breakdown, final viscosity, and setback of mixed flour. Tapioca flour in the proportion of 81.25% to 100.00% w/w recorded the lowest hardness of fresh gel beads (92.00 to 283.00 g). Soy flour in the proportion of 11.25% to 50.00% w/w exhibited lower texture profiles (hardness, chewiness, and gumminess) than tapioca flour in gel beads for both chilled and rehydrated freeze-dried gel beads. Significant relationships were found among pasting profiles of the flour mixtures and texture profiles of fresh, chilled, and rehydrated freeze-dried gel beads, implying a functional role for soy flour in food gel beads. In conclusion, soy flour can act as an anti-retrogradation agent for the gel beads both in chilled (stored at 4°C for 7 days) and freeze-dried conditions. A small amount of cane sugar does not affect the inhibition of starch retrogradation in the gel bead system. Keywords: Anti-retrogradation, Food gel bead, Pasting profile, Soy flour, Tapioca flour, Texture profiles","PeriodicalId":10049,"journal":{"name":"Chiang Mai University journal of natural sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chiang Mai University journal of natural sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12982/cmujns.2021.093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract An extreme vertices design for a mixture of three components was used to establish the proportions of tapioca flour (50% to 100% w/w), soy flour (0% to 50% w/w), and cane sugar (0% to 10% w/w) mass fractions in a food gel bead system. Thus, nine compositions were prepared and analyzed. The pasting profiles of the mixtures were studied using a Rapid Visco Analyzer. The texture profiles of fresh, chilled, and rehydrated freeze-dried gel beads were studied using a texture analyzer. Increasing the proportion of soy flour in the range of 11.25% to 50.00% w/w decreased the peak viscosity, breakdown, final viscosity, and setback of mixed flour. Tapioca flour in the proportion of 81.25% to 100.00% w/w recorded the lowest hardness of fresh gel beads (92.00 to 283.00 g). Soy flour in the proportion of 11.25% to 50.00% w/w exhibited lower texture profiles (hardness, chewiness, and gumminess) than tapioca flour in gel beads for both chilled and rehydrated freeze-dried gel beads. Significant relationships were found among pasting profiles of the flour mixtures and texture profiles of fresh, chilled, and rehydrated freeze-dried gel beads, implying a functional role for soy flour in food gel beads. In conclusion, soy flour can act as an anti-retrogradation agent for the gel beads both in chilled (stored at 4°C for 7 days) and freeze-dried conditions. A small amount of cane sugar does not affect the inhibition of starch retrogradation in the gel bead system. Keywords: Anti-retrogradation, Food gel bead, Pasting profile, Soy flour, Tapioca flour, Texture profiles