{"title":"Kinetics for the photo-chemical degradation of Methyl butyrate in presence of Cl atoms and OH radicals","authors":"Ramya Cheramangalath Balan, Rajakumar Balla","doi":"10.1007/s10874-021-09417-w","DOIUrl":null,"url":null,"abstract":"<div><p>The Cl/OH initiated temperature dependent photo-oxidative reaction kinetics of methyl butyrate (MB) were examined using a relative rate (RR) technique. Gas chromatography with flame ionization and mass spectrometric detection were used to monitor the concentration of the reactants and to identify the products. The temperature dependent kinetics of MB with Cl atoms were measured with respect to the reaction of Cl with C<sub>2</sub>H <sub>6</sub> and C<sub>2</sub>H<sub>4</sub>. The temperature dependent kinetics for the reaction of MB with OH radicals were measured using n- propanol and iso -propanol as references. The obtained rate coefficients for the Cl and OH reactions with MB are, k Cl(Expt) (T) = [(7.76 ± 0.47) × 10 <sup>−11</sup>] exp [(10.31 ± 0.20)/T] cm<sup>3</sup> molecule<sup>−1</sup> s<sup>−1</sup> and k OH(Expt) (T) = [(4.32 ± 0.21) × 10 <sup>−12</sup>] exp [-(25.26 ± 0.39)/T] cm<sup>3</sup> molecule<sup>−1</sup> s<sup>−1</sup> respectively. Dual level direct dynamics were used to perform the computational calculations to further elucidate the mechanisms over the studied temperature range. The rate coefficients for H-abstraction reactions were computed using Canonical Variational Transition State Theory with Small Curvature Tunneling (CVT/SCT) with Interpolated Single Point Energies (ISPE) method. The rate coefficients over the studied temperature range yielded the Arrhenius equations: k Cl(Theory) (200–400 K) = [(4.05 ± 0.54) × 10<sup>–11</sup>] exp [-(2.80 ± 0.11)/T] cm<sup>3</sup> molecule<sup>−1</sup> s<sup>−1</sup> and k OH(Theory) (200–400 K) = [(1.96 ± 0.68) × 10 -11] exp [-(384 ± 38)/T] cm<sup>3</sup> molecule <sup>−1</sup> s <sup>−1</sup>. Possible degradation mechanisms for the reactions are proposed based on the observed products. Thermo-chemical parameters, ozone formation potential, branching ratios, and the atmospheric lifetime of MB are calculated to understand the fate of MB in the atmosphere.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"78 4","pages":"219 - 238"},"PeriodicalIF":3.0000,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-021-09417-w","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-021-09417-w","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The Cl/OH initiated temperature dependent photo-oxidative reaction kinetics of methyl butyrate (MB) were examined using a relative rate (RR) technique. Gas chromatography with flame ionization and mass spectrometric detection were used to monitor the concentration of the reactants and to identify the products. The temperature dependent kinetics of MB with Cl atoms were measured with respect to the reaction of Cl with C2H 6 and C2H4. The temperature dependent kinetics for the reaction of MB with OH radicals were measured using n- propanol and iso -propanol as references. The obtained rate coefficients for the Cl and OH reactions with MB are, k Cl(Expt) (T) = [(7.76 ± 0.47) × 10 −11] exp [(10.31 ± 0.20)/T] cm3 molecule−1 s−1 and k OH(Expt) (T) = [(4.32 ± 0.21) × 10 −12] exp [-(25.26 ± 0.39)/T] cm3 molecule−1 s−1 respectively. Dual level direct dynamics were used to perform the computational calculations to further elucidate the mechanisms over the studied temperature range. The rate coefficients for H-abstraction reactions were computed using Canonical Variational Transition State Theory with Small Curvature Tunneling (CVT/SCT) with Interpolated Single Point Energies (ISPE) method. The rate coefficients over the studied temperature range yielded the Arrhenius equations: k Cl(Theory) (200–400 K) = [(4.05 ± 0.54) × 10–11] exp [-(2.80 ± 0.11)/T] cm3 molecule−1 s−1 and k OH(Theory) (200–400 K) = [(1.96 ± 0.68) × 10 -11] exp [-(384 ± 38)/T] cm3 molecule −1 s −1. Possible degradation mechanisms for the reactions are proposed based on the observed products. Thermo-chemical parameters, ozone formation potential, branching ratios, and the atmospheric lifetime of MB are calculated to understand the fate of MB in the atmosphere.
期刊介绍:
The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics:
Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only.
The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere.
Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere.
Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.