Sihao Yu , Zixin Zhang , Shuaifeng Wang , Xin Huang , Qinghua Lei
{"title":"A performance-based hybrid deep learning model for predicting TBM advance rate using Attention-ResNet-LSTM","authors":"Sihao Yu , Zixin Zhang , Shuaifeng Wang , Xin Huang , Qinghua Lei","doi":"10.1016/j.jrmge.2023.06.010","DOIUrl":null,"url":null,"abstract":"<div><p>The technology of tunnel boring machine (TBM) has been widely applied for underground construction worldwide; however, how to ensure the TBM tunneling process safe and efficient remains a major concern. Advance rate is a key parameter of TBM operation and reflects the TBM-ground interaction, for which a reliable prediction helps optimize the TBM performance. Here, we develop a hybrid neural network model, called Attention-ResNet-LSTM, for accurate prediction of the TBM advance rate. A database including geological properties and TBM operational parameters from the Yangtze River Natural Gas Pipeline Project is used to train and test this deep learning model. The evolutionary polynomial regression method is adopted to aid the selection of input parameters. The results of numerical experiments show that our Attention-ResNet-LSTM model outperforms other commonly-used intelligent models with a lower root mean square error and a lower mean absolute percentage error. Further, parametric analyses are conducted to explore the effects of the sequence length of historical data and the model architecture on the prediction accuracy. A correlation analysis between the input and output parameters is also implemented to provide guidance for adjusting relevant TBM operational parameters. The performance of our hybrid intelligent model is demonstrated in a case study of TBM tunneling through a complex ground with variable strata. Finally, data collected from the Baimang River Tunnel Project in Shenzhen of China are used to further test the generalization of our model. The results indicate that, compared to the conventional ResNet-LSTM model, our model has a better predictive capability for scenarios with unknown datasets due to its self-adaptive characteristic.</p></div>","PeriodicalId":54219,"journal":{"name":"Journal of Rock Mechanics and Geotechnical Engineering","volume":"16 1","pages":"Pages 65-80"},"PeriodicalIF":9.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674775523001968/pdfft?md5=30f856dcc3137aa74ecf42e35cbe8223&pid=1-s2.0-S1674775523001968-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rock Mechanics and Geotechnical Engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674775523001968","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The technology of tunnel boring machine (TBM) has been widely applied for underground construction worldwide; however, how to ensure the TBM tunneling process safe and efficient remains a major concern. Advance rate is a key parameter of TBM operation and reflects the TBM-ground interaction, for which a reliable prediction helps optimize the TBM performance. Here, we develop a hybrid neural network model, called Attention-ResNet-LSTM, for accurate prediction of the TBM advance rate. A database including geological properties and TBM operational parameters from the Yangtze River Natural Gas Pipeline Project is used to train and test this deep learning model. The evolutionary polynomial regression method is adopted to aid the selection of input parameters. The results of numerical experiments show that our Attention-ResNet-LSTM model outperforms other commonly-used intelligent models with a lower root mean square error and a lower mean absolute percentage error. Further, parametric analyses are conducted to explore the effects of the sequence length of historical data and the model architecture on the prediction accuracy. A correlation analysis between the input and output parameters is also implemented to provide guidance for adjusting relevant TBM operational parameters. The performance of our hybrid intelligent model is demonstrated in a case study of TBM tunneling through a complex ground with variable strata. Finally, data collected from the Baimang River Tunnel Project in Shenzhen of China are used to further test the generalization of our model. The results indicate that, compared to the conventional ResNet-LSTM model, our model has a better predictive capability for scenarios with unknown datasets due to its self-adaptive characteristic.
期刊介绍:
The Journal of Rock Mechanics and Geotechnical Engineering (JRMGE), overseen by the Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, is dedicated to the latest advancements in rock mechanics and geotechnical engineering. It serves as a platform for global scholars to stay updated on developments in various related fields including soil mechanics, foundation engineering, civil engineering, mining engineering, hydraulic engineering, petroleum engineering, and engineering geology. With a focus on fostering international academic exchange, JRMGE acts as a conduit between theoretical advancements and practical applications. Topics covered include new theories, technologies, methods, experiences, in-situ and laboratory tests, developments, case studies, and timely reviews within the realm of rock mechanics and geotechnical engineering.