E. Chanel, Simon Baudoin, Marie-Hélène Baurand, Nadir Belkhier, Eric Bourgeat-Lami, S. Degenkolb, M. Jentschel, Victorien Joyet, M. Kreuz, E. Lelièvre-Berna, J. Lucas, X. Tonon, O. Zimmer
{"title":"Concept and strategy of SuperSUN: A new ultracold neutron converter","authors":"E. Chanel, Simon Baudoin, Marie-Hélène Baurand, Nadir Belkhier, Eric Bourgeat-Lami, S. Degenkolb, M. Jentschel, Victorien Joyet, M. Kreuz, E. Lelièvre-Berna, J. Lucas, X. Tonon, O. Zimmer","doi":"10.3233/jnr-220013","DOIUrl":null,"url":null,"abstract":"A new source of ultracold neutrons (UCNs), developed at the Institut Laue-Langevin (ILL) and named SuperSUN, is currently being commissioned. Its operational principle is the conversion of cold neutrons, delivered by ILL’s existing beam H523, to UCNs in a vessel filled with superfluid helium-4, wherein the neutron’s energy and momentum are transferred by inelastic scattering to phonons in the superfluid. The inverse Boltzmann-suppressed process is negligible at temperatures below 0.6 K, enabling long storage times and high in-situ UCN densities as demonstrated at the ILL for two prototype sources. These two prototypes are installed at secondary beams behind crystal monochromators, whereas a primary beam with a white cold spectrum illuminates the SuperSUN conversion volume. This provides not only higher intensity around the wavelength 0.89 nm where the dominant single-phonon process for UCN production takes place, but also a contribution to UCN production by multi-phonon processes. In the first phase of the project, material walls will trap the UCNs, while in the second phase an octupole magnet will generate a 2.1 T magnetic field at the edge of the conversion volume. For low-field-seeking UCNs, this field increases the trapping potential and reduces wall losses so that the accumulated UCNs are spin-polarized as a result. SuperSUN aims to deliver the highest possible UCN densities to external storage experiments, the first of which will be the PanEDM experiment measuring the neutron’s permanent electric dipole moment.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jnr-220013","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
A new source of ultracold neutrons (UCNs), developed at the Institut Laue-Langevin (ILL) and named SuperSUN, is currently being commissioned. Its operational principle is the conversion of cold neutrons, delivered by ILL’s existing beam H523, to UCNs in a vessel filled with superfluid helium-4, wherein the neutron’s energy and momentum are transferred by inelastic scattering to phonons in the superfluid. The inverse Boltzmann-suppressed process is negligible at temperatures below 0.6 K, enabling long storage times and high in-situ UCN densities as demonstrated at the ILL for two prototype sources. These two prototypes are installed at secondary beams behind crystal monochromators, whereas a primary beam with a white cold spectrum illuminates the SuperSUN conversion volume. This provides not only higher intensity around the wavelength 0.89 nm where the dominant single-phonon process for UCN production takes place, but also a contribution to UCN production by multi-phonon processes. In the first phase of the project, material walls will trap the UCNs, while in the second phase an octupole magnet will generate a 2.1 T magnetic field at the edge of the conversion volume. For low-field-seeking UCNs, this field increases the trapping potential and reduces wall losses so that the accumulated UCNs are spin-polarized as a result. SuperSUN aims to deliver the highest possible UCN densities to external storage experiments, the first of which will be the PanEDM experiment measuring the neutron’s permanent electric dipole moment.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.