Development and application of a profile loss model considering the low-Re effect in low-pressure turbine

IF 0.7 4区 工程技术 Q4 ENGINEERING, AEROSPACE International Journal of Turbo & Jet-Engines Pub Date : 2022-09-23 DOI:10.1515/tjeng-2022-0052
W. Jia, Q. Kong, Guanyun Xiao, Handong Mu
{"title":"Development and application of a profile loss model considering the low-Re effect in low-pressure turbine","authors":"W. Jia, Q. Kong, Guanyun Xiao, Handong Mu","doi":"10.1515/tjeng-2022-0052","DOIUrl":null,"url":null,"abstract":"Abstract To improve the prediction accuracy of profile loss at low Reynolds number, a typical low-pressure turbine cascade T106D-EIZ was selected to numerically investigate the effect of Reynolds number on turbine cascade flow. A detailed analysis of profile loss was performed and a profile loss model considering the low-Re effect was developed. Results showed that the incidence angle has a great effect on the inlet and outlet Mach number at low Reynolds number, and the variation of inlet and outlet Mach number further affects the blade profile loss. A correction factor was introduced to consider the effect of incidence angle and Mach number on the profile loss. The profile loss coefficient and stalling incidence angle were both extended to lower Reynolds number based on the numerical results. A Smart Through Flow Analysis Program (STFAP) was developed using the finite volume method to solve the circumferentially averaged Euler equations of S2 surface. Aerodynamic performance of E3 5-stage low-pressure turbine was predicted by STFAP coupled with low-Re profile loss model. Compared with K-O model, the prediction accuracy of efficiency of low-pressure turbine last stage is improved by nearly 1.1 percentage points when the 5-stage low-pressure turbine is in a low Reynolds number state.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbo & Jet-Engines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tjeng-2022-0052","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract To improve the prediction accuracy of profile loss at low Reynolds number, a typical low-pressure turbine cascade T106D-EIZ was selected to numerically investigate the effect of Reynolds number on turbine cascade flow. A detailed analysis of profile loss was performed and a profile loss model considering the low-Re effect was developed. Results showed that the incidence angle has a great effect on the inlet and outlet Mach number at low Reynolds number, and the variation of inlet and outlet Mach number further affects the blade profile loss. A correction factor was introduced to consider the effect of incidence angle and Mach number on the profile loss. The profile loss coefficient and stalling incidence angle were both extended to lower Reynolds number based on the numerical results. A Smart Through Flow Analysis Program (STFAP) was developed using the finite volume method to solve the circumferentially averaged Euler equations of S2 surface. Aerodynamic performance of E3 5-stage low-pressure turbine was predicted by STFAP coupled with low-Re profile loss model. Compared with K-O model, the prediction accuracy of efficiency of low-pressure turbine last stage is improved by nearly 1.1 percentage points when the 5-stage low-pressure turbine is in a low Reynolds number state.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑低压涡轮低re效应的叶型损失模型的建立与应用
摘要为了提高低雷诺数下叶型损失的预测精度,选取典型的低压涡轮叶栅T106D-EIZ,对雷诺数对涡轮叶栅流动的影响进行了数值研究。对剖面损失进行了详细分析,并建立了考虑低Re效应的剖面损失模型。结果表明,在低雷诺数条件下,入射角对进出口马赫数有很大影响,进出口马赫数来进一步影响叶片型面损失。引入了一个修正因子来考虑入射角和马赫数对剖面损失的影响。基于数值结果,将型面损失系数和失速入射角都扩展到较低的雷诺数。利用有限体积法开发了一个智能贯流分析程序(STFAP)来求解S2曲面的周向平均Euler方程。利用STFAP结合低Re剖面损失模型对E3五级低压汽轮机的气动性能进行了预测。与K-O模型相比,当5级低压涡轮机处于低雷诺数状态时,低压涡轮机末级效率的预测精度提高了近1.1个百分点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Turbo & Jet-Engines
International Journal of Turbo & Jet-Engines 工程技术-工程:宇航
CiteScore
1.90
自引率
11.10%
发文量
36
审稿时长
6 months
期刊介绍: The Main aim and scope of this Journal is to help improve each separate components R&D and superimpose separated results to get integrated systems by striving to reach the overall advanced design and benefits by integrating: (a) Physics, Aero, and Stealth Thermodynamics in simulations by flying unmanned or manned prototypes supported by integrated Computer Simulations based on: (b) Component R&D of: (i) Turbo and Jet-Engines, (ii) Airframe, (iii) Helmet-Aiming-Systems and Ammunition based on: (c) Anticipated New Programs Missions based on (d) IMPROVED RELIABILITY, DURABILITY, ECONOMICS, TACTICS, STRATEGIES and EDUCATION in both the civil and military domains of Turbo and Jet Engines. The International Journal of Turbo & Jet Engines is devoted to cutting edge research in theory and design of propagation of jet aircraft. It serves as an international publication organ for new ideas, insights and results from industry and academic research on thermodynamics, combustion, behavior of related materials at high temperatures, turbine and engine design, thrust vectoring and flight control as well as energy and environmental issues.
期刊最新文献
The International Journal of Turbo and Jet Engines Research on high-bandwidth linear active disturbance rejection control method for variable speed turboshaft engine Influence of inlet structure on combustion flow structure in magnesium powder fueled water ramjet engine C conjugate heat transfer simulation of swirl internal cooling on blade leading edge Effect of velocity ratio and Mach number on thin lip coaxial jet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1