The article suggests a disc brake design with carbon friction materials (CFMs). The principle of the method is to create two friction units in the disc brake with materials placed in them that have different frictional properties. The two friction units are created by separating the brake disc with a thermally insulating screen. One friction unit (friction unit A) has CFMs installed having a low friction coefficient in the initial temperature mode and a high friction coefficient at a temperature of 300°C or higher. The other friction unit has a premium-class car block (CB) and a steel disk (35GS steel) the friction coefficient of which does not depend on temperature (friction unit B). The experiment conducted justifies the creation of a disc brake based on the described principle. The experiment was carried out on a testing bench that simulates the interaction of the disc brake as per the load-speed criteria. The testing bench creates conditions for a constructive separation of the brake disc into friction units A and B. As an example of two friction units: CFM–CFM (friction unit A) and CB–steel 35GS (friction unit B). The experimental performance of the friction coefficient versus temperature obtained on the testing bench in relation to friction units containing friction materials CFM–CFM and CB–steel 35GS showed that the friction coefficient of the disc brake takes high values in the entire range of temperatures tested during braking. The article offers a promising design of a disc brake with thermally insulated friction units. The design consists of two brake discs and a central part, which is thermally insulating. All parts are glued together.