Algoritma K-Nearest Neighbor untuk Memprediksi Prestasi Mahasiswa Berdasarkan Latar Belakang Pendidikan dan Ekonomi

Daru Prasetyawan, Rahmadhan Gatra
{"title":"Algoritma K-Nearest Neighbor untuk Memprediksi Prestasi Mahasiswa Berdasarkan Latar Belakang Pendidikan dan Ekonomi","authors":"Daru Prasetyawan, Rahmadhan Gatra","doi":"10.14421/jiska.2022.7.1.56-67","DOIUrl":null,"url":null,"abstract":"Student academic performance is one measure of success in higher education. Prediction of student academic performance is important because it can help in decision-making. K-Nearest Neighbor (K-NN) algorithm is a method that can be used to predict it. Normalization is needed to scale the attribute value, so the data are in a smaller range than the actual data. Feature selection is used to eliminate irrelevant features. Data cleaning from outliers in the dataset aims to delete data that can affect the classification process. In the classification process, the dataset is divided into a training set by 80% and a validation set by 20% using the cross-validation method. The classification model that is formed is tested using data that is separate from the training data and is evaluated using a confusion matrix. As an evaluation, the K-NN model has 95.85% average accuracy, 95.97% average precision, and 95.84% average recall.","PeriodicalId":34216,"journal":{"name":"JISKA Jurnal Informatika Sunan Kalijaga","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JISKA Jurnal Informatika Sunan Kalijaga","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14421/jiska.2022.7.1.56-67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Student academic performance is one measure of success in higher education. Prediction of student academic performance is important because it can help in decision-making. K-Nearest Neighbor (K-NN) algorithm is a method that can be used to predict it. Normalization is needed to scale the attribute value, so the data are in a smaller range than the actual data. Feature selection is used to eliminate irrelevant features. Data cleaning from outliers in the dataset aims to delete data that can affect the classification process. In the classification process, the dataset is divided into a training set by 80% and a validation set by 20% using the cross-validation method. The classification model that is formed is tested using data that is separate from the training data and is evaluated using a confusion matrix. As an evaluation, the K-NN model has 95.85% average accuracy, 95.97% average precision, and 95.84% average recall.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
邻近的K-Nearest算法根据教育和经济背景来预测学生的成就
学生的学习成绩是衡量高等教育成功与否的标准之一。预测学生的学习成绩很重要,因为它有助于决策。k -最近邻(K-NN)算法是一种可以用来对其进行预测的方法。需要规范化来缩放属性值,因此数据的范围比实际数据的范围小。特征选择用于消除不相关的特征。从数据集中的异常值中清除数据的目的是删除可能影响分类过程的数据。在分类过程中,使用交叉验证方法将数据集分成80%的训练集和20%的验证集。所形成的分类模型使用与训练数据分离的数据进行测试,并使用混淆矩阵进行评估。作为评价,K-NN模型的平均准确率为95.85%,平均精度为95.97%,平均召回率为95.84%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
21
审稿时长
12 weeks
期刊最新文献
Pemodelan Proses Bisnis Kuliah Online MOOCs menggunakan BPMN (Studi Kasus alison.com) Analisis Bibliometrik Publikasi Isu Kebocoran Data Menggunakan VOSviewer Klasifikasi Sentimen Masyarakat Terhadap Proses Pemindahan Ibu Kota Negara (IKN) Indonesia pada Media Sosial Twitter Menggunakan Metode Naïve Bayes Klasifikasi Tingkat Kerusakan Sektor Pasca Bencana Alam Menggunakan Metode MULTIMOORA Berbasis Web Pembuatan Ergonomic Mechanical Keyboard untuk Mengurangi Cidera Tangan Menggunakan Teknologi Arduino
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1