Attention mechanism and skip-gram embedded phrases

Q2 Arts and Humanities Comparative Legilinguistics Pub Date : 2023-01-09 DOI:10.14746/cl.52.2022.14
P. Krimpas, C. Valavani
{"title":"Attention mechanism and skip-gram embedded phrases","authors":"P. Krimpas, C. Valavani","doi":"10.14746/cl.52.2022.14","DOIUrl":null,"url":null,"abstract":"This article examines common translation errors that occur in the translation of legal texts. In particular, it focuses on how German texts containing legal terminology are rendered into Modern Greek by the Google translation machine. Our case study is the Google-assisted translation of the original (German) version of the Constitution of the Federal Republic of Germany into Modern Greek. A training method is proposed for phrase extraction based on the occurrence frequency, which goes through the Skip-gram algorithm to be then integrated into the Self Attention Mechanism proposed by Vaswani et al. (2017) in order to minimise human effort and contribute to the development of a robust machine translation system for multi-word legal terms and special phrases. This Neural Machine Translation approach aims at developing vectorised phrases from large corpora and process them for translation. The research direction is to increase the in-domain training data set and enrich the vector dimension with more information for legal concepts (domain specific features).","PeriodicalId":32698,"journal":{"name":"Comparative Legilinguistics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Legilinguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14746/cl.52.2022.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

Abstract

This article examines common translation errors that occur in the translation of legal texts. In particular, it focuses on how German texts containing legal terminology are rendered into Modern Greek by the Google translation machine. Our case study is the Google-assisted translation of the original (German) version of the Constitution of the Federal Republic of Germany into Modern Greek. A training method is proposed for phrase extraction based on the occurrence frequency, which goes through the Skip-gram algorithm to be then integrated into the Self Attention Mechanism proposed by Vaswani et al. (2017) in order to minimise human effort and contribute to the development of a robust machine translation system for multi-word legal terms and special phrases. This Neural Machine Translation approach aims at developing vectorised phrases from large corpora and process them for translation. The research direction is to increase the in-domain training data set and enrich the vector dimension with more information for legal concepts (domain specific features).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
注意机制和跳码嵌入短语
本文探讨了法律文本翻译中常见的翻译错误。特别地,它侧重于如何德语文本包含法律术语被翻译成现代希腊语谷歌翻译机器。我们的案例研究是在谷歌的帮助下将德意志联邦共和国宪法的原始(德语)版本翻译成现代希腊语。提出了一种基于出现频率的短语提取训练方法,该方法通过Skip-gram算法,然后集成到Vaswani等人(2017)提出的自注意机制中,以最大限度地减少人力,并有助于开发多词法律术语和特殊短语的强大机器翻译系统。这种神经机器翻译方法旨在从大型语料库中开发矢量化短语并对其进行处理以进行翻译。研究方向是增加域内训练数据集,为法律概念(领域特定特征)提供更多信息,丰富向量维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Comparative Legilinguistics
Comparative Legilinguistics Arts and Humanities-Language and Linguistics
CiteScore
1.00
自引率
0.00%
发文量
12
审稿时长
18 weeks
期刊最新文献
Simultaneous interpretation in interpreter-mediated remote legal proceedings: some observations from a forum theatre study De la protection de l’environnement dans les Constitutions Algeriennes On the challenges of legal translation Problems in English-Chinese and Chinese-English legal translation: with a case study of mistranslations Preface to the Special Issue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1