Review and Harmonization of the Life-Cycle Global Warming Impact of PV-Powered Hydrogen Production by Electrolysis

IF 1.9 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Frontiers in electronics Pub Date : 2021-09-09 DOI:10.3389/felec.2021.711103
Olga Kanz, K. Bittkau, K. Ding, U. Rau, A. Reinders
{"title":"Review and Harmonization of the Life-Cycle Global Warming Impact of PV-Powered Hydrogen Production by Electrolysis","authors":"Olga Kanz, K. Bittkau, K. Ding, U. Rau, A. Reinders","doi":"10.3389/felec.2021.711103","DOIUrl":null,"url":null,"abstract":"This work presents a review of life-cycle assessment (LCA) studies of hydrogen electrolysis using power from photovoltaic (PV) systems. The paper discusses the assumptions, strengths and weaknesses of 13 LCA studies and identifies the causes of the environmental impact. Differences in assumptions of system boundaries, system sizes, evaluation methods, and functional units make it challenging to directly compare the Global Warming Potential (GWP) resulting from different studies. To simplify this process, 13 selected LCA studies on PV-powered hydrogen production have been harmonized following a consistent framework described by this paper. The harmonized GWP values vary from 0.7 to 6.6 kg CO2-eq/kg H2 which can be considered a wide range. The maximum absolute difference between the original and harmonized GWP results of a study is 1.5 kg CO2-eq/kg H2. Yet even the highest GWP of this study is over four times lower than the GWP of grid-powered electrolysis in Germany. Due to the lack of transparency of most LCAs included in this review, full identification of the sources of discrepancies (methods applied, assumed production conditions) is not possible. Overall it can be concluded that the environmental impact of the electrolytic hydrogen production process is mainly caused by the GWP of the electricity supply. For future environmental impact studies on hydrogen production systems, it is highly recommended to 1) divide the whole system into well-defined subsystems using compression as the final stage of the LCA and 2) to provide energy inputs/GWP results for the different subsystems.","PeriodicalId":73081,"journal":{"name":"Frontiers in electronics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/felec.2021.711103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 12

Abstract

This work presents a review of life-cycle assessment (LCA) studies of hydrogen electrolysis using power from photovoltaic (PV) systems. The paper discusses the assumptions, strengths and weaknesses of 13 LCA studies and identifies the causes of the environmental impact. Differences in assumptions of system boundaries, system sizes, evaluation methods, and functional units make it challenging to directly compare the Global Warming Potential (GWP) resulting from different studies. To simplify this process, 13 selected LCA studies on PV-powered hydrogen production have been harmonized following a consistent framework described by this paper. The harmonized GWP values vary from 0.7 to 6.6 kg CO2-eq/kg H2 which can be considered a wide range. The maximum absolute difference between the original and harmonized GWP results of a study is 1.5 kg CO2-eq/kg H2. Yet even the highest GWP of this study is over four times lower than the GWP of grid-powered electrolysis in Germany. Due to the lack of transparency of most LCAs included in this review, full identification of the sources of discrepancies (methods applied, assumed production conditions) is not possible. Overall it can be concluded that the environmental impact of the electrolytic hydrogen production process is mainly caused by the GWP of the electricity supply. For future environmental impact studies on hydrogen production systems, it is highly recommended to 1) divide the whole system into well-defined subsystems using compression as the final stage of the LCA and 2) to provide energy inputs/GWP results for the different subsystems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光伏电解制氢的生命周期全球变暖影响的回顾与协调
本文综述了利用光伏发电系统进行氢电解的生命周期评估(LCA)研究。本文讨论了13项LCA研究的假设、优势和不足,并确定了环境影响的原因。由于对系统边界、系统规模、评估方法和功能单元的假设存在差异,直接比较不同研究得出的全球变暖潜势(GWP)具有挑战性。为了简化这一过程,根据本文描述的一致框架,对13项选定的LCA研究进行了协调。统一的GWP值在0.7 ~ 6.6 kg co2当量/kg H2之间变化,可以认为是一个很宽的范围。一项研究的原始和协调GWP结果之间的最大绝对差为1.5 kg CO2-eq/kg H2。然而,即使是这项研究中最高的全球变暖潜能值也比德国电网电解的全球变暖潜能值低四倍多。由于本次评审中包含的大多数lca缺乏透明度,因此不可能完全确定差异的来源(应用的方法,假设的生产条件)。综上所述,电解制氢过程的环境影响主要由供电的GWP引起。对于未来对制氢系统的环境影响研究,强烈建议:1)将整个系统划分为定义良好的子系统,使用压缩作为LCA的最后阶段;2)为不同子系统提供能量输入/GWP结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electromagnetic based flexible bioelectronics and its applications Impact of head-down-tilt body position on abdomen resistance for urinary bladder monitory applications Hardware acceleration of DNA pattern matching using analog resistive CAMs Hardware acceleration of DNA pattern matching using analog resistive CAMs Editorial: Electromagnetic compatibility design and power electronics technologies in modern power systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1