Performance optimization of geopolymer mortar blending in nano-SiO2 and PVA fiber based on set pair analysis

IF 3.2 3区 化学 Q2 POLYMER SCIENCE e-Polymers Pub Date : 2023-01-01 DOI:10.1515/epoly-2023-0015
P. Zhang, Xuemei Zhang, Peng Yuan, Shaowei Hu
{"title":"Performance optimization of geopolymer mortar blending in nano-SiO2 and PVA fiber based on set pair analysis","authors":"P. Zhang, Xuemei Zhang, Peng Yuan, Shaowei Hu","doi":"10.1515/epoly-2023-0015","DOIUrl":null,"url":null,"abstract":"Abstract The method of set pair analysis was used to evaluate the comprehensive performance of geopolymer mortar (GM) based on metakaolin and fly ash modified by nano-SiO2 (NS) and polyvinyl alcohol (PVA) fiber, and the design of mix proportion for GM was optimized. According to the experimental results, the addition of the NS and PVA fiber can improve the comprehensive properties of GM. The properties of GM are better when the NS content is 1.5% and PVA fiber content is 0.6%. The comprehensive performance of GM included workability, mechanical properties, fracture properties, and durability, and the typical performance parameters were selected as slump flow, compressive strength, bending strength, fracture energy, loss ratio of compressive strength after cycles of freezing-thawing, and electric flux values. The results show that the weights of each indicator derived from the method of set pair analysis have reduced subjective arbitrariness, improved the evaluation accuracy, and made the conclusions obtained from the set pair analysis method more scientific and reasonable. The method of set pair analysis combines the mechanical properties, durability, and workability of GM blending in PVA fiber and NS to achieve a comprehensive qualitative and quantitative evaluation, which can provide a new method for assessing the comprehensive performance of the GM composites blending in PVA fiber and NS in the future.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/epoly-2023-0015","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The method of set pair analysis was used to evaluate the comprehensive performance of geopolymer mortar (GM) based on metakaolin and fly ash modified by nano-SiO2 (NS) and polyvinyl alcohol (PVA) fiber, and the design of mix proportion for GM was optimized. According to the experimental results, the addition of the NS and PVA fiber can improve the comprehensive properties of GM. The properties of GM are better when the NS content is 1.5% and PVA fiber content is 0.6%. The comprehensive performance of GM included workability, mechanical properties, fracture properties, and durability, and the typical performance parameters were selected as slump flow, compressive strength, bending strength, fracture energy, loss ratio of compressive strength after cycles of freezing-thawing, and electric flux values. The results show that the weights of each indicator derived from the method of set pair analysis have reduced subjective arbitrariness, improved the evaluation accuracy, and made the conclusions obtained from the set pair analysis method more scientific and reasonable. The method of set pair analysis combines the mechanical properties, durability, and workability of GM blending in PVA fiber and NS to achieve a comprehensive qualitative and quantitative evaluation, which can provide a new method for assessing the comprehensive performance of the GM composites blending in PVA fiber and NS in the future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于集对分析的纳米sio2与PVA纤维共混地聚合物砂浆性能优化
摘要采用集对分析法对偏高岭土和粉煤灰经纳米sio2 (NS)和聚乙烯醇(PVA)纤维改性后的地聚合物砂浆(GM)的综合性能进行了评价,并对GM的配合比设计进行了优化。实验结果表明,添加NS和PVA纤维可以改善GM的综合性能,当NS含量为1.5%,PVA纤维含量为0.6%时,GM的性能较好。GM的综合性能包括可加工性、力学性能、断裂性能和耐久性,典型性能参数为坍落度、抗压强度、弯曲强度、断裂能、冻融循环后抗压强度损失率和电通量值。结果表明,集对分析法得出的各指标权重降低了主观随意性,提高了评价精度,使集对分析法得出的结论更加科学合理。集对分析方法将GM共混在PVA纤维和NS中的力学性能、耐久性和和易性结合起来,实现了全面的定性和定量评价,为今后评价PVA纤维和NS共混的GM复合材料的综合性能提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
e-Polymers
e-Polymers 化学-高分子科学
CiteScore
5.90
自引率
10.80%
发文量
64
审稿时长
6.4 months
期刊介绍: e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome. The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.
期刊最新文献
Design, synthesis, and characterization of novel copolymer gel particles for water-plugging applications Influence of 1,1′-Azobis(cyclohexanezonitrile) on the thermo-oxidative aging performance of diolefin elastomers Additive manufacturing (3D printing) technologies for fiber-reinforced polymer composite materials: A review on fabrication methods and process parameters Effect of tannic acid chelating treatment on thermo-oxidative aging property of natural rubber Normal-hexane treatment on PET-based waste fiber depolymerization process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1