{"title":"Recent advances in Zn–CO2 batteries for the co-production of electricity and carbonaceous fuels","authors":"Ying Guo , Rong Zhang , Shaoce Zhang , Chunyi Zhi","doi":"10.1016/j.nanoms.2022.09.004","DOIUrl":null,"url":null,"abstract":"<div><div>Electrochemical CO<sub>2</sub> reduction has been considered a promising approach to neutralizing the global CO<sub>2</sub> level. As an intriguing technique, metal-CO<sub>2</sub> battery devices can not only capture CO<sub>2</sub> into valuable carbonaceous chemicals and reduce the CO<sub>2</sub> concentration in the atmosphere but enable energy conversion. Among metal-CO<sub>2</sub> batteries, aqueous Zn–CO<sub>2</sub> batteries, especially rechargeable systems, exhibit flexible CO<sub>2</sub> electrochemistry in terms of multi-carbon chemicals, which are gaseous or water-soluble, in favor of rechargeability and cycling durability of aqueous battery systems. Despite the increasing number of publications on Zn–CO<sub>2</sub> batteries in the past three years, this field is still in its beginning stage and facing many challenges considering the capability of CO<sub>2</sub> fixation and battery performance. Herein, we present a timely and overall summary of the recent progress in Zn–CO<sub>2</sub> batteries, including fundamental mechanisms, affecting factors on electrochemical performance, catalyst cathodes, and electrolytes (catholytes and anolytes). Besides, we assess the application potential of Zn–CO<sub>2</sub> batteries and compare this with those of alkali metal-CO<sub>2</sub> batteries based on CO<sub>2</sub> fixation and battery performance. Finally, we point out some current challenges for the further development of Zn–CO<sub>2</sub> batteries and put forward perspectives of the research directions for practical applications of Zn–CO<sub>2</sub> batteries in the future.</div></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"7 6","pages":"Pages 862-876"},"PeriodicalIF":17.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965122000526","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical CO2 reduction has been considered a promising approach to neutralizing the global CO2 level. As an intriguing technique, metal-CO2 battery devices can not only capture CO2 into valuable carbonaceous chemicals and reduce the CO2 concentration in the atmosphere but enable energy conversion. Among metal-CO2 batteries, aqueous Zn–CO2 batteries, especially rechargeable systems, exhibit flexible CO2 electrochemistry in terms of multi-carbon chemicals, which are gaseous or water-soluble, in favor of rechargeability and cycling durability of aqueous battery systems. Despite the increasing number of publications on Zn–CO2 batteries in the past three years, this field is still in its beginning stage and facing many challenges considering the capability of CO2 fixation and battery performance. Herein, we present a timely and overall summary of the recent progress in Zn–CO2 batteries, including fundamental mechanisms, affecting factors on electrochemical performance, catalyst cathodes, and electrolytes (catholytes and anolytes). Besides, we assess the application potential of Zn–CO2 batteries and compare this with those of alkali metal-CO2 batteries based on CO2 fixation and battery performance. Finally, we point out some current challenges for the further development of Zn–CO2 batteries and put forward perspectives of the research directions for practical applications of Zn–CO2 batteries in the future.
期刊介绍:
Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.