In Praise and in Criticism of the Model of Continuous Spontaneous Localization of the Wave-Function

Sofia D. Wechsler
{"title":"In Praise and in Criticism of the Model of Continuous Spontaneous Localization of the Wave-Function","authors":"Sofia D. Wechsler","doi":"10.4236/JQIS.2020.104006","DOIUrl":null,"url":null,"abstract":"Different attempts to solve the measurement problem of the quantum mechanics (QM) by denying the collapse principle, and replacing it with changes in the quantum formalism, failed because the changes in the formalism lead to contradictions with QM predictions. To the difference, Ghirardi, Rimini and Weber took the collapse as a real phenomenon, and proposed a calculus by which the wave-function should undergo a sudden localization. Later on, Ghirardi, Pearle and Rimini came with a change of this calculus into the CSL (continuous spontaneous localization) model of collapse. Both these proposals rely on the experimental fact that the reduction of the wave-function occurs when the microscopic system encounters a macroscopic object and involves a big amount of its particles. Both of them also change the quantum formalism by introducing in the Schrodinger equation additional terms with noisy behavior. However, these terms have practically no influence as long as the studied system contains only one or a few components. Only when the amount of components is very big, these terms become significant and lead to the reduction of the wave-function to one of its components. The present work has two purposes: 1) proving that the collapse postulate is unavoidable; 2) applying the CSL model to the process in a detector and showing step by step the modification of the wave-function, until reduction. As a side detail, it is argued here that the noise cannot originate in some classical field, contrary to the thought/hope of some physicists, because no classical field is tailored by the wave-functions of entanglements.","PeriodicalId":58996,"journal":{"name":"量子信息科学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"量子信息科学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/JQIS.2020.104006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Different attempts to solve the measurement problem of the quantum mechanics (QM) by denying the collapse principle, and replacing it with changes in the quantum formalism, failed because the changes in the formalism lead to contradictions with QM predictions. To the difference, Ghirardi, Rimini and Weber took the collapse as a real phenomenon, and proposed a calculus by which the wave-function should undergo a sudden localization. Later on, Ghirardi, Pearle and Rimini came with a change of this calculus into the CSL (continuous spontaneous localization) model of collapse. Both these proposals rely on the experimental fact that the reduction of the wave-function occurs when the microscopic system encounters a macroscopic object and involves a big amount of its particles. Both of them also change the quantum formalism by introducing in the Schrodinger equation additional terms with noisy behavior. However, these terms have practically no influence as long as the studied system contains only one or a few components. Only when the amount of components is very big, these terms become significant and lead to the reduction of the wave-function to one of its components. The present work has two purposes: 1) proving that the collapse postulate is unavoidable; 2) applying the CSL model to the process in a detector and showing step by step the modification of the wave-function, until reduction. As a side detail, it is argued here that the noise cannot originate in some classical field, contrary to the thought/hope of some physicists, because no classical field is tailored by the wave-functions of entanglements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
波函数连续自发局部化模型的褒贬
通过否认坍缩原理并用量子形式的变化来代替它来解决量子力学(QM)的测量问题的不同尝试都失败了,因为形式的变化导致了与QM预测的矛盾。不同的是,Ghirardi、Rimini和Weber将坍塌视为一种真实现象,并提出了一种使波函数发生突然局部化的微积分。后来,Ghirardi、Pearle和Rimini将这种演算转变为CSL(连续自发定位)崩溃模型。这两个建议都依赖于实验事实,即当微观系统遇到宏观物体并涉及大量粒子时,波函数就会减少。它们还通过在薛定谔方程中引入具有噪声行为的附加项来改变量子形式。然而,只要所研究的系统仅包含一个或几个组件,这些术语实际上就没有影响。只有当分量的数量非常大时,这些项才会变得重要,并导致波函数减少到它的一个分量。本工作有两个目的:1)证明坍塌假设是不可避免的;2) 将CSL模型应用于检测器中的过程,并逐步显示波函数的修改,直到减少。作为一个次要的细节,这里认为噪声不可能起源于某个经典场,这与一些物理学家的想法/希望相反,因为没有一个经典场是由纠缠的波函数定制的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
108
期刊最新文献
Toward Constructing a Continuous Logical Operator for Error-Corrected Quantum Sensing What in Fact Proves the Violation of the Bell-Type Inequalities? Quantum Algorithm for Mining Frequent Patterns for Association Rule Mining Bell’s Theorem and Einstein’s Worry about Quantum Mechanics Accelerating Quantum Readiness for Sectors: Risk Management and Strategies for Sectors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1