{"title":"Nonconvex optimization for third‐order tensor completion under wavelet transform","authors":"Quan Yu, Minru Bai","doi":"10.1002/nla.2489","DOIUrl":null,"url":null,"abstract":"The main aim of this paper is to develop a nonconvex optimization model for third‐order tensor completion under wavelet transform. On the one hand, through wavelet transform of frontal slices, we divide a large tensor data into a main part tensor and three detail part tensors, and the elements of these four tensors are about a quarter of the original tensors. Solving these four small tensors can not only improve the operation efficiency, but also better restore the original tensor data. On the other hand, by using concave correction term, we are able to correct for low rank of tubal nuclear norm (TNN) data fidelity term and sparsity of l1$$ {l}_1 $$ ‐norm data fidelity term. We prove that the proposed algorithm can converge to some critical point. Experimental results on image, magnetic resonance imaging and video inpainting tasks clearly demonstrate the superior performance and efficiency of our developed method over state‐of‐the‐arts including the TNN and other methods.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2489","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The main aim of this paper is to develop a nonconvex optimization model for third‐order tensor completion under wavelet transform. On the one hand, through wavelet transform of frontal slices, we divide a large tensor data into a main part tensor and three detail part tensors, and the elements of these four tensors are about a quarter of the original tensors. Solving these four small tensors can not only improve the operation efficiency, but also better restore the original tensor data. On the other hand, by using concave correction term, we are able to correct for low rank of tubal nuclear norm (TNN) data fidelity term and sparsity of l1$$ {l}_1 $$ ‐norm data fidelity term. We prove that the proposed algorithm can converge to some critical point. Experimental results on image, magnetic resonance imaging and video inpainting tasks clearly demonstrate the superior performance and efficiency of our developed method over state‐of‐the‐arts including the TNN and other methods.
期刊介绍:
Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review.
Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects.
Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.