Simultaneous removal process of hydrogen sulfide and siloxanes and field application of iron hydroxide desulfurization agent for green hydrogen production from biogas
Jae Myung Lee, Jae-Hun Shin, Min Ju Lee, Whajung Kim, H. Song, S. Kim
{"title":"Simultaneous removal process of hydrogen sulfide and siloxanes and field application of iron hydroxide desulfurization agent for green hydrogen production from biogas","authors":"Jae Myung Lee, Jae-Hun Shin, Min Ju Lee, Whajung Kim, H. Song, S. Kim","doi":"10.31025/2611-4135/2023.18276","DOIUrl":null,"url":null,"abstract":"Biogas, one of renewable energies, is a key element necessary for a carbon-neutral policy and to build a hydrogen economy. In order to utilize biogas, impurities of biogas such as moisture, hydrogen sulfide(H2S), siloxanes, and VOCs should be removed. In particular, since H2S causes corrosiveness of equipment by sulfur oxides, and is harmful to the human body if leaked, it is a major target material to be removed. The minimum concentration of H2S obtainable from the wet method is several ppm. It is known, however that the iron hydroxide-based adsorbent in the dry method can obtain ultimately low concentration of H2S down to 0.1 ppm or less. The DeHyS was manufactured through a series of processes such as mixing iron cloride solution or iron sulfate solution, NaOH solution, and inorganic binder. During the adsorption process, H2S was removed in the form of iron sulfide through a chemical reaction, and siloxanes are known to be removed through physical adsorption. It was also applied to various biogas plant sites such as landfill gas, sewage sludge, livestock manure, and food waste. At this time, the H2S removal efficiency was known to be 99.9% or more, while simultaneous removal of 90% or more of the total siloxanes was possible. Moreover, the biogas produced at the Chungju Food Bioenergy Center was pretreated using the DeHyS and supplied to the nearby Chungju Bio Green Hydrogen Charging Station to produce hydrogen through steam methane reforming(SMR), producing 500 kg of hydrogen from 8,000 m3 of biogas per day.","PeriodicalId":44191,"journal":{"name":"Detritus","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Detritus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31025/2611-4135/2023.18276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Biogas, one of renewable energies, is a key element necessary for a carbon-neutral policy and to build a hydrogen economy. In order to utilize biogas, impurities of biogas such as moisture, hydrogen sulfide(H2S), siloxanes, and VOCs should be removed. In particular, since H2S causes corrosiveness of equipment by sulfur oxides, and is harmful to the human body if leaked, it is a major target material to be removed. The minimum concentration of H2S obtainable from the wet method is several ppm. It is known, however that the iron hydroxide-based adsorbent in the dry method can obtain ultimately low concentration of H2S down to 0.1 ppm or less. The DeHyS was manufactured through a series of processes such as mixing iron cloride solution or iron sulfate solution, NaOH solution, and inorganic binder. During the adsorption process, H2S was removed in the form of iron sulfide through a chemical reaction, and siloxanes are known to be removed through physical adsorption. It was also applied to various biogas plant sites such as landfill gas, sewage sludge, livestock manure, and food waste. At this time, the H2S removal efficiency was known to be 99.9% or more, while simultaneous removal of 90% or more of the total siloxanes was possible. Moreover, the biogas produced at the Chungju Food Bioenergy Center was pretreated using the DeHyS and supplied to the nearby Chungju Bio Green Hydrogen Charging Station to produce hydrogen through steam methane reforming(SMR), producing 500 kg of hydrogen from 8,000 m3 of biogas per day.