Interventional Probing in High Dimensions: An NLI Case Study

Julia Rozanova, Marco Valentino, Lucas C. Cordeiro, André Freitas
{"title":"Interventional Probing in High Dimensions: An NLI Case Study","authors":"Julia Rozanova, Marco Valentino, Lucas C. Cordeiro, André Freitas","doi":"10.48550/arXiv.2304.10346","DOIUrl":null,"url":null,"abstract":"Probing strategies have been shown to detectthe presence of various linguistic features inlarge language models; in particular, seman-tic features intermediate to the “natural logic”fragment of the Natural Language Inferencetask (NLI). In the case of natural logic, the rela-tion between the intermediate features and theentailment label is explicitly known: as such,this provides a ripe setting for interventionalstudies on the NLI models’ representations, al-lowing for stronger causal conjectures and adeeper critical analysis of interventional prob-ing methods. In this work, we carry out newand existing representation-level interventionsto investigate the effect of these semantic fea-tures on NLI classification: we perform am-nesic probing (which removes features as di-rected by learned linear probes) and introducethe mnestic probing variation (which forgetsall dimensions except the probe-selected ones).Furthermore, we delve into the limitations ofthese methods and outline some pitfalls havebeen obscuring the effectivity of interventionalprobing studies.","PeriodicalId":73025,"journal":{"name":"Findings (Sydney (N.S.W.)","volume":"1 1","pages":"2444-2455"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Findings (Sydney (N.S.W.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2304.10346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Probing strategies have been shown to detectthe presence of various linguistic features inlarge language models; in particular, seman-tic features intermediate to the “natural logic”fragment of the Natural Language Inferencetask (NLI). In the case of natural logic, the rela-tion between the intermediate features and theentailment label is explicitly known: as such,this provides a ripe setting for interventionalstudies on the NLI models’ representations, al-lowing for stronger causal conjectures and adeeper critical analysis of interventional prob-ing methods. In this work, we carry out newand existing representation-level interventionsto investigate the effect of these semantic fea-tures on NLI classification: we perform am-nesic probing (which removes features as di-rected by learned linear probes) and introducethe mnestic probing variation (which forgetsall dimensions except the probe-selected ones).Furthermore, we delve into the limitations ofthese methods and outline some pitfalls havebeen obscuring the effectivity of interventionalprobing studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高维介入探查:NLI个案研究
探究策略已被证明可以在大型语言模型中检测各种语言特征的存在;特别是自然语言推理任务(NLI)的“自然逻辑”片段中间的语义特征。在自然逻辑的情况下,中间特征和蕴涵标签之间的关系是明确已知的:因此,这为NLI模型表征的干预性研究提供了一个成熟的环境,允许更强的因果猜想和对干预性探测方法的更深入的批判性分析。在这项工作中,我们进行了新的和现有的表征级干预来研究这些语义特征对NLI分类的影响:我们执行无记忆探测(通过学习的线性探测去除特征)并引入无记忆探测变异(除了探测选择的维度外,它会忘记所有维度)。此外,我们深入研究了这些方法的局限性,并概述了一些陷阱,这些陷阱已经模糊了介入探测研究的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Exploring Pedestrian Injury Severity by Incorporating Spatial Information in Machine Learning Darkness and Death in the U.S.: Walking Distances Across the Nation by Time of Day and Time of Year Activity Reduction as Resilience Indicator: Evidence with Filomena Data The Lifestyle and Mobility Connection of Community Supported Agriculture (CSA) Users Transit Fleet Electrification Barriers, Resolutions and Costs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1