Xiaoyu Peng, Lei Wang, Jinbo Zhang, Jiawen Chen, B. Dai
{"title":"The Field Shielding Effect of Mountain on the Lightning Electromagnetic Field","authors":"Xiaoyu Peng, Lei Wang, Jinbo Zhang, Jiawen Chen, B. Dai","doi":"10.4236/jemaa.2020.122003","DOIUrl":null,"url":null,"abstract":"In this paper we have studied the effect of strike to a cone-shaped mountain surrounded by two chains of hills on the lightning vertical electric field and azimuthal magnetic field at different distances, by using two-dimensional finite-difference time-domain (2-D FDTD) method in cylindrical coordinate systems. In order to analyze the electrostatic shielding effect of strike to a cone-shaped mountain surrounded by two chains of hills on the lightning, we chose three mountains, and the left one is stroke by lightning, and the right one is near the obervation site, and the middle one with the top heights increasing from 0 to 2 km is between them. For the observed point, the electrostatic shielding effect of the right one on the lightning vertical electric field is the most serious, and the electric field is much less than that for strike to flat ground level; compared with the electric field, the shielding effect of the right one on the lightning azimuthal magnetic field becomes less, for most cases, the lightning magnetic field at the observed site is larger than that for flat ground cases mainly due to that of the increment caused by strike to the right mountain. With the increase of distance (e.g., 20 km from the lightning strike point), the shielding effect of the right mountain on the lightning field becomes less, because the reflected wave from the right mountain bottom plays a more important role over intermediate ranges, and the far radiation electromagnetic field peak value becomes larger due to such a reflecting wave. Therefore, in the lightning detecting technique, we should pay more attention to the effect caused by chains of hills on the lightning location and the estimation of lightning current peak.","PeriodicalId":58231,"journal":{"name":"电磁分析与应用期刊(英文)","volume":"12 1","pages":"15-28"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"电磁分析与应用期刊(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/jemaa.2020.122003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper we have studied the effect of strike to a cone-shaped mountain surrounded by two chains of hills on the lightning vertical electric field and azimuthal magnetic field at different distances, by using two-dimensional finite-difference time-domain (2-D FDTD) method in cylindrical coordinate systems. In order to analyze the electrostatic shielding effect of strike to a cone-shaped mountain surrounded by two chains of hills on the lightning, we chose three mountains, and the left one is stroke by lightning, and the right one is near the obervation site, and the middle one with the top heights increasing from 0 to 2 km is between them. For the observed point, the electrostatic shielding effect of the right one on the lightning vertical electric field is the most serious, and the electric field is much less than that for strike to flat ground level; compared with the electric field, the shielding effect of the right one on the lightning azimuthal magnetic field becomes less, for most cases, the lightning magnetic field at the observed site is larger than that for flat ground cases mainly due to that of the increment caused by strike to the right mountain. With the increase of distance (e.g., 20 km from the lightning strike point), the shielding effect of the right mountain on the lightning field becomes less, because the reflected wave from the right mountain bottom plays a more important role over intermediate ranges, and the far radiation electromagnetic field peak value becomes larger due to such a reflecting wave. Therefore, in the lightning detecting technique, we should pay more attention to the effect caused by chains of hills on the lightning location and the estimation of lightning current peak.