The Field Shielding Effect of Mountain on the Lightning Electromagnetic Field

Xiaoyu Peng, Lei Wang, Jinbo Zhang, Jiawen Chen, B. Dai
{"title":"The Field Shielding Effect of Mountain on the Lightning Electromagnetic Field","authors":"Xiaoyu Peng, Lei Wang, Jinbo Zhang, Jiawen Chen, B. Dai","doi":"10.4236/jemaa.2020.122003","DOIUrl":null,"url":null,"abstract":"In this paper we have studied the effect of strike to a cone-shaped mountain surrounded by two chains of hills on the lightning vertical electric field and azimuthal magnetic field at different distances, by using two-dimensional finite-difference time-domain (2-D FDTD) method in cylindrical coordinate systems. In order to analyze the electrostatic shielding effect of strike to a cone-shaped mountain surrounded by two chains of hills on the lightning, we chose three mountains, and the left one is stroke by lightning, and the right one is near the obervation site, and the middle one with the top heights increasing from 0 to 2 km is between them. For the observed point, the electrostatic shielding effect of the right one on the lightning vertical electric field is the most serious, and the electric field is much less than that for strike to flat ground level; compared with the electric field, the shielding effect of the right one on the lightning azimuthal magnetic field becomes less, for most cases, the lightning magnetic field at the observed site is larger than that for flat ground cases mainly due to that of the increment caused by strike to the right mountain. With the increase of distance (e.g., 20 km from the lightning strike point), the shielding effect of the right mountain on the lightning field becomes less, because the reflected wave from the right mountain bottom plays a more important role over intermediate ranges, and the far radiation electromagnetic field peak value becomes larger due to such a reflecting wave. Therefore, in the lightning detecting technique, we should pay more attention to the effect caused by chains of hills on the lightning location and the estimation of lightning current peak.","PeriodicalId":58231,"journal":{"name":"电磁分析与应用期刊(英文)","volume":"12 1","pages":"15-28"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"电磁分析与应用期刊(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/jemaa.2020.122003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we have studied the effect of strike to a cone-shaped mountain surrounded by two chains of hills on the lightning vertical electric field and azimuthal magnetic field at different distances, by using two-dimensional finite-difference time-domain (2-D FDTD) method in cylindrical coordinate systems. In order to analyze the electrostatic shielding effect of strike to a cone-shaped mountain surrounded by two chains of hills on the lightning, we chose three mountains, and the left one is stroke by lightning, and the right one is near the obervation site, and the middle one with the top heights increasing from 0 to 2 km is between them. For the observed point, the electrostatic shielding effect of the right one on the lightning vertical electric field is the most serious, and the electric field is much less than that for strike to flat ground level; compared with the electric field, the shielding effect of the right one on the lightning azimuthal magnetic field becomes less, for most cases, the lightning magnetic field at the observed site is larger than that for flat ground cases mainly due to that of the increment caused by strike to the right mountain. With the increase of distance (e.g., 20 km from the lightning strike point), the shielding effect of the right mountain on the lightning field becomes less, because the reflected wave from the right mountain bottom plays a more important role over intermediate ranges, and the far radiation electromagnetic field peak value becomes larger due to such a reflecting wave. Therefore, in the lightning detecting technique, we should pay more attention to the effect caused by chains of hills on the lightning location and the estimation of lightning current peak.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
山地对雷电电磁场的屏蔽作用
本文利用圆柱坐标系下的二维时域有限差分(2d FDTD)方法,研究了被两个山链包围的锥形山在不同距离上被击对闪电垂直电场和方位磁场的影响。为了分析雷击对被两个山链包围的锥形山的静电屏蔽作用,我们选择了三座山,左边是雷击的山,右边是靠近观测点的山,中间是山顶高度从0到2 km递增的山。对观测点而言,右侧观测点对闪电垂直电场的静电屏蔽作用最为严重,远小于对平地的静电屏蔽作用;与电场相比,右山对闪电方位磁场的屏蔽作用变小,在大多数情况下,观测地点的闪电磁场大于平地情况,这主要是由于击向右山造成的增量造成的。随着距离的增加(例如距离雷击点20km),右山对闪电场的屏蔽作用变小,因为右山底部的反射波在中距离范围内起着更重要的作用,由于这种反射波,远辐射电磁场峰值变大。因此,在雷电探测技术中,应重视山链对雷电定位和雷电电流峰值估计的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
441
期刊最新文献
Determination of the Base Optimum Thickness of Back Illuminated (n+/p/p+) Bifacial Silicon Solar Cell, by Help of Diffusion Coefficient at Resonance Frequency Radio Frequency Quadrupole for Bunching Electron Beam: Electromagnetic Field, Particle Velocity Range, and Accuracy at 10 GHz Generation of Higher Terahertz Harmonics in Nonlinear Paraelectrics under Focusing in a Wide Temperature Range Proper Understanding of the Natures of Electrons, Protons, and Modifying Redundancies in Electro-Magnetism Hints of the Photonic Nature of the Electromagnetic Fields in Classical Electrodynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1