Towards reliable object representation via sparse directional patches and spatial center cues

IF 6.2 3区 综合性期刊 Q1 Multidisciplinary Fundamental Research Pub Date : 2025-01-01 DOI:10.1016/j.fmre.2023.08.001
Muwei Jian , Hui Yu
{"title":"Towards reliable object representation via sparse directional patches and spatial center cues","authors":"Muwei Jian ,&nbsp;Hui Yu","doi":"10.1016/j.fmre.2023.08.001","DOIUrl":null,"url":null,"abstract":"<div><div>In the process of image understanding, the human visual system (HVS) performs multiscale analysis on various objects. HVS primarily focuses on marginally conspicuous image patches located within or around distinct objects rather than scanning the image pixels point by point. Inspired by the HVS mechanism, in this paper, we aimed to describe and exploit multiscale decomposition-based patch detection models for automatic visual feature representation and object localization in images. Our investigation into mimicking and modeling the HVS to capture conspicuous sparse patches and their spatial distribution clues makes a profound contribution to the automatic comprehension and characterization of images by machines. This study demonstrates that the sparse patch-based visual representation with spatial center cues is intrinsically tolerant to object positioning and understanding beyond object variations in spatial position, multiresolution, and chrominance, which has significant implications for many vision-based automatic object grabbing and perception applications, such as robotics, human‒machine interaction, and unmanned aerial vehicles (UAVs).</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"5 1","pages":"Pages 354-359"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667325823002194","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

In the process of image understanding, the human visual system (HVS) performs multiscale analysis on various objects. HVS primarily focuses on marginally conspicuous image patches located within or around distinct objects rather than scanning the image pixels point by point. Inspired by the HVS mechanism, in this paper, we aimed to describe and exploit multiscale decomposition-based patch detection models for automatic visual feature representation and object localization in images. Our investigation into mimicking and modeling the HVS to capture conspicuous sparse patches and their spatial distribution clues makes a profound contribution to the automatic comprehension and characterization of images by machines. This study demonstrates that the sparse patch-based visual representation with spatial center cues is intrinsically tolerant to object positioning and understanding beyond object variations in spatial position, multiresolution, and chrominance, which has significant implications for many vision-based automatic object grabbing and perception applications, such as robotics, human‒machine interaction, and unmanned aerial vehicles (UAVs).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于稀疏方向补丁和空间中心线索的可靠对象表示
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fundamental Research
Fundamental Research Multidisciplinary-Multidisciplinary
CiteScore
4.00
自引率
1.60%
发文量
294
审稿时长
79 days
期刊介绍:
期刊最新文献
Loosening metal nodes in metal-organic frameworks to facilitate the regulation of valence Polarization variable terahertz metasurface along the propagation path Out-of-phase relationship of Holocene moisture variations between the northeastern and southeastern Tibetan plateau and its societal impacts Disease prediction by network information gain on a single sample basis Mannan-decorated STING-activating vaccine carrier for spatial coordinative stimulating antigen-specific immune responses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1