B. M. Alotaibi, M. Atta, E. Abdeltwab, A. Atta, M. Abdel-Hamid
{"title":"Surface modifications and optical studies of irradiated flexible PDMS materials","authors":"B. M. Alotaibi, M. Atta, E. Abdeltwab, A. Atta, M. Abdel-Hamid","doi":"10.1680/jsuin.22.01089","DOIUrl":null,"url":null,"abstract":"This work aimed to modify the surface properties of polydimethylsiloxane (PDMS) for used in optoelectronic devices utilizing handmade ion source. The films were exposed to hydrogen fluence of 6x1017, 9x1017, and 12x1017 ions/cm2. XRD as well as FTIR were used to reveal the changes in PDMS after irradiation. Similarly, SEM is employed to examine the morphological alterations of irradiated surfaces. The band gap and band tail of pristine and treated films were estimated using Tauc’s methodology. By raising hydrogen fluence from 6x1017 ions/cm2 to 12x1017 ions/cm2, the band gap is lowered from 5.06 eV to 4.86 eV. Furthermore, the band tail energy is improved from 0.53 eV for PVA to 0.55 eV for 6x1017 and to 0.63 eV for 9x1017 ions/cm2. In addition, the dispersion characteristics of were estimated using the Wemple Di-Domenico method. Moreover, the extinction coefficients and refractive index were calculated. The recorded relaxation time is reduced from 2.06x10−7 sec to 1.65x10−7 sec respectively, by enhancing ion fluence from 6x1017 to 12x1017 ions/cm2. According to the finding results, ion beam irradiation is induced modification in the irradiated films for used in optical devices.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Innovations","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jsuin.22.01089","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 4
Abstract
This work aimed to modify the surface properties of polydimethylsiloxane (PDMS) for used in optoelectronic devices utilizing handmade ion source. The films were exposed to hydrogen fluence of 6x1017, 9x1017, and 12x1017 ions/cm2. XRD as well as FTIR were used to reveal the changes in PDMS after irradiation. Similarly, SEM is employed to examine the morphological alterations of irradiated surfaces. The band gap and band tail of pristine and treated films were estimated using Tauc’s methodology. By raising hydrogen fluence from 6x1017 ions/cm2 to 12x1017 ions/cm2, the band gap is lowered from 5.06 eV to 4.86 eV. Furthermore, the band tail energy is improved from 0.53 eV for PVA to 0.55 eV for 6x1017 and to 0.63 eV for 9x1017 ions/cm2. In addition, the dispersion characteristics of were estimated using the Wemple Di-Domenico method. Moreover, the extinction coefficients and refractive index were calculated. The recorded relaxation time is reduced from 2.06x10−7 sec to 1.65x10−7 sec respectively, by enhancing ion fluence from 6x1017 to 12x1017 ions/cm2. According to the finding results, ion beam irradiation is induced modification in the irradiated films for used in optical devices.
Surface InnovationsCHEMISTRY, PHYSICALMATERIALS SCIENCE, COAT-MATERIALS SCIENCE, COATINGS & FILMS
CiteScore
5.80
自引率
22.90%
发文量
66
期刊介绍:
The material innovations on surfaces, combined with understanding and manipulation of physics and chemistry of functional surfaces and coatings, have exploded in the past decade at an incredibly rapid pace.
Superhydrophobicity, superhydrophlicity, self-cleaning, self-healing, anti-fouling, anti-bacterial, etc., have become important fundamental topics of surface science research community driven by curiosity of physics, chemistry, and biology of interaction phenomenon at surfaces and their enormous potential in practical applications. Materials having controlled-functionality surfaces and coatings are important to the manufacturing of new products for environmental control, liquid manipulation, nanotechnological advances, biomedical engineering, pharmacy, biotechnology, and many others, and are part of the most promising technological innovations of the twenty-first century.