Jiaheng Peng , Peng Tao , Chengyi Song , Wen Shang , Tao Deng , Jianbo Wu
{"title":"Structural evolution of Pt-based oxygen reduction reaction electrocatalysts","authors":"Jiaheng Peng , Peng Tao , Chengyi Song , Wen Shang , Tao Deng , Jianbo Wu","doi":"10.1016/S1872-2067(21)63896-2","DOIUrl":null,"url":null,"abstract":"<div><h3>ABSTRACT</h3><p>The commercialization of proton exchange membrane fuel cells (PEMFCs) could provide a cleaner energy society in the near future. However, the sluggish reaction kinetics and harsh conditions of the oxygen reduction reaction affect the durability and cost of PEMFCs. Most previous reports on Pt-based electrocatalyst designs have focused more on improving their activity; however, with the commercialization of PEMFCs, durability has received increasing attention. In-depth insight into the structural evolution of Pt-based electrocatalysts throughout their lifecycle can contribute to further optimization of their activity and durability. The development of <em>in situ</em> electron microscopy and other <em>in situ</em> techniques has promoted the elucidation of the evolution mechanism. This mini review highlights recent advances in the structural evolution of Pt-based electrocatalysts. The mechanisms are adequately discussed, and some methods to inhibit or exploit the structural evolution of the catalysts are also briefly reviewed.</p></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":null,"pages":null},"PeriodicalIF":15.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206721638962","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 8
Abstract
ABSTRACT
The commercialization of proton exchange membrane fuel cells (PEMFCs) could provide a cleaner energy society in the near future. However, the sluggish reaction kinetics and harsh conditions of the oxygen reduction reaction affect the durability and cost of PEMFCs. Most previous reports on Pt-based electrocatalyst designs have focused more on improving their activity; however, with the commercialization of PEMFCs, durability has received increasing attention. In-depth insight into the structural evolution of Pt-based electrocatalysts throughout their lifecycle can contribute to further optimization of their activity and durability. The development of in situ electron microscopy and other in situ techniques has promoted the elucidation of the evolution mechanism. This mini review highlights recent advances in the structural evolution of Pt-based electrocatalysts. The mechanisms are adequately discussed, and some methods to inhibit or exploit the structural evolution of the catalysts are also briefly reviewed.
期刊介绍:
The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.