Yaoyang Hu, Geoffrey Rivers, Michael P. Weir, David B. Amabilino, Christopher J. Tuck, Ricky D. Wildman, Oleg Makarovsky, Simon Woodward
{"title":"A Soluble ‘Ba(Ni-ett)’ (ett = 1,1,2,2-Ethenetetrathiolate) Derived Thermoelectric Material","authors":"Yaoyang Hu, Geoffrey Rivers, Michael P. Weir, David B. Amabilino, Christopher J. Tuck, Ricky D. Wildman, Oleg Makarovsky, Simon Woodward","doi":"10.1007/s13391-023-00454-z","DOIUrl":null,"url":null,"abstract":"<div><p>We describe the synthesis and characterisation of the first of a new class of soluble ladder oligomeric thermoelectric material based on previously unutilised ethene-1,1,2,2-tetrasulfonic acid. Reaction of Ba(OH)<sub>2</sub> and propionic acid at a 1:1 stoichiometry leads to the formation of the previously unrecognised soluble [Ba(OH)(O<sub>2</sub>CEt)]⋅H<sub>2</sub>O. The latter when used to hydrolyse 1,3,4,6-tetrathiapentalene-2,5-dione (TPD), in the presence of NiCl<sub>2</sub>, forms a new material whose elemental composition is in accord with the formula [(EtCO<sub>2</sub>Ba)<sub>4</sub>Ni<sub>8</sub>{(O<sub>3</sub>S)<sub>2</sub>C = C(SO<sub>3</sub>)<sub>2</sub>}<sub>5</sub>]⋅22H<sub>2</sub>O (<b>4</b>). Compound <b>4</b> can be pressed into pellets, drop-cast as DMSO solutions or ink-jet printed (down to sub-mm resolutions). While its room temperature thermoelectric properties are modest (σ<sub>max</sub> 0.04 S cm<sup>−1</sup> and Seebeck coefficient, α<sub>max</sub> − 25.8 μV K<sup>−1</sup>) we introduce a versatile new oligomeric material that opens new possible synthetic routes for n-type thermoelectrics.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 2","pages":"150 - 157"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13391-023-00454-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-023-00454-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We describe the synthesis and characterisation of the first of a new class of soluble ladder oligomeric thermoelectric material based on previously unutilised ethene-1,1,2,2-tetrasulfonic acid. Reaction of Ba(OH)2 and propionic acid at a 1:1 stoichiometry leads to the formation of the previously unrecognised soluble [Ba(OH)(O2CEt)]⋅H2O. The latter when used to hydrolyse 1,3,4,6-tetrathiapentalene-2,5-dione (TPD), in the presence of NiCl2, forms a new material whose elemental composition is in accord with the formula [(EtCO2Ba)4Ni8{(O3S)2C = C(SO3)2}5]⋅22H2O (4). Compound 4 can be pressed into pellets, drop-cast as DMSO solutions or ink-jet printed (down to sub-mm resolutions). While its room temperature thermoelectric properties are modest (σmax 0.04 S cm−1 and Seebeck coefficient, αmax − 25.8 μV K−1) we introduce a versatile new oligomeric material that opens new possible synthetic routes for n-type thermoelectrics.
期刊介绍:
Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.