Molecular mechanisms of myocardial damage in the hypertensive rats and hypertensive rats with metabolic disorders (diabetes mellitus, atherosclerosis)

Q3 Pharmacology, Toxicology and Pharmaceutics Research Results in Pharmacology Pub Date : 2022-10-05 DOI:10.3897/rrpharmacology.8.78534
I. Belenichev, Andrii V. Abramov, A. Puzyrenko, N. Bukhtiyarova, N. Gorchakova, P. Bak
{"title":"Molecular mechanisms of myocardial damage in the hypertensive rats and hypertensive rats with metabolic disorders (diabetes mellitus, atherosclerosis)","authors":"I. Belenichev, Andrii V. Abramov, A. Puzyrenko, N. Bukhtiyarova, N. Gorchakova, P. Bak","doi":"10.3897/rrpharmacology.8.78534","DOIUrl":null,"url":null,"abstract":"Introduction: Despite the success which was achieved in the treatment of arterial hypertension, for optimization of the treatment, it is necessary to study the pathogenesis of primary arterial hypertension and target organ damage on the molecular level.\n Materials and methods: Our team studied the molecular mechanisms of myocardial damage during arterial hypertension and metabolic disorders. We used the spontaneously hypertensive rats (SHR) as an experimental model, and, additionally, we modeled diabetes mellitus and atherosclerosis in these rats.\n Results and discussion: Our study obtained evidence of a much higher level of the energy imbalance in the cardiomyocytes and more intensive production of reactive oxygen species in the SHRs with diabetes mellitus and atherosclerosis compared with the healthy animals and the animals with only hypertension. The indicated defections create an environment for further cellular damage – mitochondrial dysfunction, depletion in the thiol-disulfide system, and formation of highly reactive NO products. At the same time, we have noticed a higher activity of the Hsp70 in the hypertensive groups compared with the normotensive animals. The source of these deviations is in the formation of mitochondrial dysfunction of cardiocytes, the cause of which is oxidative modification of the protein structures of mitochondria under conditions of activation of oxidative stress reactions, insufficiency of mPT pores, and impaired mitochondrial chaperone function. The presented data give reason to believe that mitochondrial dysfunction, which develops against the background of deficient HSP70, is an integral aspect of arterial hypertension, contributes to its aggravation, and triggers a cascade of molecular and biochemical mechanisms of myocardial damage. These mechanisms include disturbances in the L-arginine-NO-synthase-NO system, production of mitochondrial iNOS oxygen radicals, neutralization of the vasorelaxant effect of NO and its transformation into an active participant in nitrous stress due to reduced intermediates of the thiol-disulfide system. The question of cause-and-effect relationships of oxidative stress remains open for discussion.\n Conclusion: We envisage that studies in this direction may lead to a better insight into a pathogenetic therapy of essential hypertension, diabetes mellitus, and atherosclerosis.\n Graphical abstract:\n \n \n","PeriodicalId":21030,"journal":{"name":"Research Results in Pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Results in Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/rrpharmacology.8.78534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 1

Abstract

Introduction: Despite the success which was achieved in the treatment of arterial hypertension, for optimization of the treatment, it is necessary to study the pathogenesis of primary arterial hypertension and target organ damage on the molecular level. Materials and methods: Our team studied the molecular mechanisms of myocardial damage during arterial hypertension and metabolic disorders. We used the spontaneously hypertensive rats (SHR) as an experimental model, and, additionally, we modeled diabetes mellitus and atherosclerosis in these rats. Results and discussion: Our study obtained evidence of a much higher level of the energy imbalance in the cardiomyocytes and more intensive production of reactive oxygen species in the SHRs with diabetes mellitus and atherosclerosis compared with the healthy animals and the animals with only hypertension. The indicated defections create an environment for further cellular damage – mitochondrial dysfunction, depletion in the thiol-disulfide system, and formation of highly reactive NO products. At the same time, we have noticed a higher activity of the Hsp70 in the hypertensive groups compared with the normotensive animals. The source of these deviations is in the formation of mitochondrial dysfunction of cardiocytes, the cause of which is oxidative modification of the protein structures of mitochondria under conditions of activation of oxidative stress reactions, insufficiency of mPT pores, and impaired mitochondrial chaperone function. The presented data give reason to believe that mitochondrial dysfunction, which develops against the background of deficient HSP70, is an integral aspect of arterial hypertension, contributes to its aggravation, and triggers a cascade of molecular and biochemical mechanisms of myocardial damage. These mechanisms include disturbances in the L-arginine-NO-synthase-NO system, production of mitochondrial iNOS oxygen radicals, neutralization of the vasorelaxant effect of NO and its transformation into an active participant in nitrous stress due to reduced intermediates of the thiol-disulfide system. The question of cause-and-effect relationships of oxidative stress remains open for discussion. Conclusion: We envisage that studies in this direction may lead to a better insight into a pathogenetic therapy of essential hypertension, diabetes mellitus, and atherosclerosis. Graphical abstract:
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular高血压大鼠及伴有代谢紊乱(糖尿病、动脉粥样硬化)的大鼠心肌损伤机制
虽然动脉高血压的治疗取得了成功,但为了优化治疗,有必要从分子水平上研究原发性动脉高血压的发病机制和靶器官损伤。材料与方法:研究了动脉高血压和代谢紊乱时心肌损伤的分子机制。我们以自发性高血压大鼠(SHR)为实验模型,并在此基础上建立了糖尿病和动脉粥样硬化模型。结果和讨论:我们的研究表明,与健康动物和仅患有高血压的动物相比,合并糖尿病和动脉粥样硬化的SHRs心肌细胞能量失衡水平更高,活性氧产生更强烈。所指出的缺陷为进一步的细胞损伤创造了一个环境——线粒体功能障碍,巯基二硫化物系统的耗损,以及高活性NO产物的形成。与此同时,我们注意到高血压组的Hsp70活性高于正常动物。这些偏差的根源在于心肌细胞线粒体功能障碍的形成,其原因是氧化应激反应激活条件下线粒体蛋白质结构的氧化修饰,mPT孔功能不足,线粒体伴侣功能受损。目前的数据使我们有理由相信,在HSP70缺失的背景下发生的线粒体功能障碍是动脉高血压的一个组成部分,有助于其加重,并引发一系列心肌损伤的分子和生化机制。这些机制包括对l-精氨酸-NO-合成酶-NO系统的干扰、线粒体iNOS氧自由基的产生、NO的血管松弛作用的中和以及由于硫醇-二硫化物系统中间体的减少而使NO转化为氮胁迫的积极参与者。氧化应激的因果关系问题仍有待讨论。结论:我们设想在这个方向上的研究可能会更好地了解原发性高血压、糖尿病和动脉粥样硬化的病理治疗。图形化的简介:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Research Results in Pharmacology
Research Results in Pharmacology Medicine-Pharmacology (medical)
CiteScore
1.50
自引率
0.00%
发文量
32
审稿时长
12 weeks
期刊最新文献
Исследование влияния полипренолов пихты сибирской на обучаемость и память мышей с экспериментальной моделью болезни Альцгеймера Chemoproteomic analysis of the promising candidate molecule of the indole derivative with lab code SV-1010 and other non-steroidal anti-inflammatory drugs An effective way for targeting EGFR-mediated carcinogenesis: an in vitro study Protective effects of thymogen analogues, modified by D-alanine, in hydrazine liver damage Assessment of VEGF and TNF-alpha levels in patients with an unexpectedly poor and suboptimal response during the treatment of infertility using ART methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1