Reducing Domain mismatch in Self-supervised speech pre-training

M. Baskar, A. Rosenberg, B. Ramabhadran, Yu Zhang, Nicolás Serrano
{"title":"Reducing Domain mismatch in Self-supervised speech pre-training","authors":"M. Baskar, A. Rosenberg, B. Ramabhadran, Yu Zhang, Nicolás Serrano","doi":"10.21437/interspeech.2022-736","DOIUrl":null,"url":null,"abstract":"Masked speech modeling (MSM) methods such as wav2vec2 or w2v-BERT learn representations over speech frames which are randomly masked within an utterance. While these methods improve performance of Automatic Speech Recognition (ASR) systems, they have one major limitation. They treat all unsupervised speech samples with equal weight, which hinders learning as not all samples have relevant information to learn meaningful representations. In this work, we address this limitation. We propose ask2mask (ATM), a novel approach to focus on specific samples during MSM pre-training. ATM employs an external ASR model or scorer to weight unsupervised input samples by performing a fine-grained data selection. ATM performs masking over the highly confident input frames as chosen by the scorer. This allows the model to learn meaningful representations. We conduct fine-tuning experiments on two well-benchmarked cor-pora: LibriSpeech (matching the pre-training data) and, AMI and CHiME-6 (not matching the pre-training data). The results substantiate the efficacy of ATM on significantly improving the recognition performance under mismatched conditions while still yielding modest improvements under matched conditions.","PeriodicalId":73500,"journal":{"name":"Interspeech","volume":"1 1","pages":"3028-3032"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interspeech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/interspeech.2022-736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Masked speech modeling (MSM) methods such as wav2vec2 or w2v-BERT learn representations over speech frames which are randomly masked within an utterance. While these methods improve performance of Automatic Speech Recognition (ASR) systems, they have one major limitation. They treat all unsupervised speech samples with equal weight, which hinders learning as not all samples have relevant information to learn meaningful representations. In this work, we address this limitation. We propose ask2mask (ATM), a novel approach to focus on specific samples during MSM pre-training. ATM employs an external ASR model or scorer to weight unsupervised input samples by performing a fine-grained data selection. ATM performs masking over the highly confident input frames as chosen by the scorer. This allows the model to learn meaningful representations. We conduct fine-tuning experiments on two well-benchmarked cor-pora: LibriSpeech (matching the pre-training data) and, AMI and CHiME-6 (not matching the pre-training data). The results substantiate the efficacy of ATM on significantly improving the recognition performance under mismatched conditions while still yielding modest improvements under matched conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
减少自监督语音预训练中的域不匹配
掩码语音建模(MSM)方法,如wav2vec2或w2v-BERT,学习在话语中随机掩码的语音帧上的表示。虽然这些方法提高了自动语音识别(ASR)系统的性能,但它们有一个主要的局限性。他们对所有的无监督语音样本的权重都是相等的,这阻碍了学习,因为不是所有的样本都有相关的信息来学习有意义的表示。在这项工作中,我们解决了这个限制。我们提出了一种在MSM预训练中关注特定样本的新方法ask2mask (ATM)。ATM采用外部ASR模型或评分器通过执行细粒度数据选择来对无监督输入样本进行加权。ATM对评分者选择的高度自信的输入帧执行屏蔽。这允许模型学习有意义的表示。我们对libisspeech(与预训练数据匹配)和AMI和CHiME-6(与预训练数据不匹配)两个经过良好基准测试的corpora进行了微调实验。结果证实了ATM在不匹配条件下显著提高识别性能,而在匹配条件下仍有适度的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contrastive Learning Approach for Assessment of Phonological Precision in Patients with Tongue Cancer Using MRI Data. Remote Assessment for ALS using Multimodal Dialog Agents: Data Quality, Feasibility and Task Compliance. Pronunciation modeling of foreign words for Mandarin ASR by considering the effect of language transfer VCSE: Time-Domain Visual-Contextual Speaker Extraction Network Induce Spoken Dialog Intents via Deep Unsupervised Context Contrastive Clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1