A Three-Dimensional Lump Model on Performances of the Stapes Displacement under Different Mechanics Property Conditions of a Middle Ear

IF 0.8 4区 工程技术 Q4 ACOUSTICS International Journal of Acoustics and Vibration Pub Date : 2020-06-30 DOI:10.20855/ijav.2020.25.21543
Y. Hsieh, Doan Minh Hai, Yue-Lin Hsieh
{"title":"A Three-Dimensional Lump Model on Performances of the Stapes Displacement under Different Mechanics Property Conditions of a Middle Ear","authors":"Y. Hsieh, Doan Minh Hai, Yue-Lin Hsieh","doi":"10.20855/ijav.2020.25.21543","DOIUrl":null,"url":null,"abstract":"In this article, a three-dimensional (3D) lumped model of the human auditoria peripherals that consisted of four masses equipped with five major springs and major dashpots is presented. This model will support the quantitative basis for construction of a human middle ear physical model. This 3D lumped model consists of a human ear bone model having a similar working principle as the tiny mechanical structure. The 3D lumped model’s parameters were identified using previous anatomical data, and then constructed via a parameter optimizing process using 16 springs and dashpots that represent the tiny mechanical structure’s five connections. The computational results showed the sensitivity priority of the five connections to the stapes displacement with a variety of sound frequencies. Moreover, a detailed discussion of the five connections’ mechanical properties affecting the magnitude of the stapes displacement was also shown in this paper. As a result of increasing the stiffness in the joint of the middle ear bone connection, the stapes’ vibrational amplitude was increased. However, the magnitude of the value of the four masses reacts in a manner that is opposite to stapes displacement. Some specific frequency ranges of the voice properties to the mass and connector systems are also discussed in this paper. The details of the individual mass or joint activity to the stapes displacement at various frequency ranges are also presented. The model’s behaviors were calculated using the software ANSYS workbench 15.0, Solid works 2017, and the MATLAB R2015a. Our findings provide a relevant reference for related medical research.","PeriodicalId":49185,"journal":{"name":"International Journal of Acoustics and Vibration","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Acoustics and Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.20855/ijav.2020.25.21543","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, a three-dimensional (3D) lumped model of the human auditoria peripherals that consisted of four masses equipped with five major springs and major dashpots is presented. This model will support the quantitative basis for construction of a human middle ear physical model. This 3D lumped model consists of a human ear bone model having a similar working principle as the tiny mechanical structure. The 3D lumped model’s parameters were identified using previous anatomical data, and then constructed via a parameter optimizing process using 16 springs and dashpots that represent the tiny mechanical structure’s five connections. The computational results showed the sensitivity priority of the five connections to the stapes displacement with a variety of sound frequencies. Moreover, a detailed discussion of the five connections’ mechanical properties affecting the magnitude of the stapes displacement was also shown in this paper. As a result of increasing the stiffness in the joint of the middle ear bone connection, the stapes’ vibrational amplitude was increased. However, the magnitude of the value of the four masses reacts in a manner that is opposite to stapes displacement. Some specific frequency ranges of the voice properties to the mass and connector systems are also discussed in this paper. The details of the individual mass or joint activity to the stapes displacement at various frequency ranges are also presented. The model’s behaviors were calculated using the software ANSYS workbench 15.0, Solid works 2017, and the MATLAB R2015a. Our findings provide a relevant reference for related medical research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同力学性能条件下中耳镫骨位移特性的三维块体模型
本文建立了人体听觉外设的三维集总模型,该模型由四个质量体组成,配有五个主要弹簧和主要阻尼器。该模型将为构建人体中耳物理模型提供定量依据。这个三维集总模型由一个人耳骨模型组成,其工作原理与微小的机械结构相似。3D集总模型的参数是使用之前的解剖数据确定的,然后通过参数优化过程构建,使用16个弹簧和阻尼器来代表微小的机械结构的五个连接。计算结果表明,在不同声频下,五种连接方式对镫骨位移的灵敏度优先级不同。此外,本文还详细讨论了五种连接方式的力学性能对镫骨位移大小的影响。由于增加了中耳骨连接关节的刚度,镫骨的振动幅度增大。然而,四个质量值的大小以与镫骨位移相反的方式发生反应。本文还讨论了质量系统和连接器系统话音特性的特定频率范围。在不同频率范围内,还给出了个体质量或关节活动对镫骨位移的详细信息。利用ANSYS workbench 15.0、Solid works 2017和MATLAB R2015a对模型的行为进行了计算。本研究结果可为相关医学研究提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Acoustics and Vibration
International Journal of Acoustics and Vibration ACOUSTICS-ENGINEERING, MECHANICAL
CiteScore
1.60
自引率
10.00%
发文量
0
审稿时长
12 months
期刊介绍: The International Journal of Acoustics and Vibration (IJAV) is the refereed open-access journal of the International Institute of Acoustics and Vibration (IIAV). The IIAV is a non-profit international scientific society founded in 1995. The primary objective of the Institute is to advance the science of acoustics and vibration by creating an international organization that is responsive to the needs of scientists and engineers concerned with acoustics and vibration problems all around the world. Manuscripts of articles, technical notes and letters-to-the-editor should be submitted to the Editor-in-Chief via the on-line submission system. Authors wishing to submit an article need to log in on the IJAV website first. Users logged into the website are able to submit new articles, track the status of their articles already submitted, upload revised articles, responses and/or rebuttals to reviewers, figures, biographies, photographs, copyright transfer agreements, and send comments to the editor. Each time the status of an article submitted changes, the author will also be notified automatically by email. IIAV members (in good standing for at least six months) can publish in IJAV free of charge and their papers will be displayed on-line immediately after they have been edited and laid-out. Non-IIAV members will be required to pay a mandatory Article Processing Charge (APC) of $200 USD if the manuscript is accepted for publication after review. The APC fee allows IIAV to make your research freely available to all readers using the Open Access model. In addition, Non-IIAV members who pay an extra voluntary publication fee (EVPF) of $500 USD will be granted expedited publication in the IJAV Journal and their papers can be displayed on the Internet after acceptance. If the $200 USD (APC) publication fee is not honored, papers will not be published. Authors who do not pay the voluntary fixed fee of $500 USD will have their papers published but there may be a considerable delay. The English text of the papers must be of high quality. If the text submitted is of low quality the manuscript will be more than likely rejected. For authors whose first language is not English, we recommend having their manuscripts reviewed and edited prior to submission by a native English speaker with scientific expertise. There are many commercial editing services which can provide this service at a cost to the authors.
期刊最新文献
Surge Motion Passive Control of TLP with Double Horizontal Tuned Mass Dampers Numerical and Experimental Evaluation of Hydrodynamic Bearings Applied to a Jeffcott Test Bench Experimental and Numerical Investigation on the Flow-Induced Interior Noise Based on Pellicular Analysis Application of Statistical Energy Analysis (SEA) in Estimating Acoustic Response of Panels With Non-Uniform Mass Distribution Railways: An Acoustical Point of View
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1