T. Omiya, F. De Bon, T. Vuchkov, A. C. Serra, A. Cavaleiro, J. F. J. Coelho, F. Ferreira
{"title":"Wear resistance by copolymers with controlled structure under boundary lubrication conditions","authors":"T. Omiya, F. De Bon, T. Vuchkov, A. C. Serra, A. Cavaleiro, J. F. J. Coelho, F. Ferreira","doi":"10.1002/ls.1669","DOIUrl":null,"url":null,"abstract":"<p>Lubricants are of paramount importance in protecting metallic contact surfaces and reducing friction. The viscosity of lubricating oil can be engineered by introducing long linear polymers, such as poly(lauryl methacrylate) (PLMA). In particular, the formation of adsorption films by using polymers with hydroxy or amino side groups has attracted much attention in recent years. In this study, copolymers with controlled structure were synthesised by SARA ATRP, which can be used in large scale production. A comparison of friction and wear under boundary lubrication was conducted using both statistical and block copolymers with low <i>Ð</i>. Friction test results using a reciprocating sliding machine (SRV) showed that the block copolymers were less likely to desorb from the metal surface than the statistical copolymers. In addition, the wear evaluation after the SRV test showed that the block copolymer had less wear and less wear debris.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":"36 1","pages":"1-8"},"PeriodicalIF":1.8000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubrication Science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ls.1669","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lubricants are of paramount importance in protecting metallic contact surfaces and reducing friction. The viscosity of lubricating oil can be engineered by introducing long linear polymers, such as poly(lauryl methacrylate) (PLMA). In particular, the formation of adsorption films by using polymers with hydroxy or amino side groups has attracted much attention in recent years. In this study, copolymers with controlled structure were synthesised by SARA ATRP, which can be used in large scale production. A comparison of friction and wear under boundary lubrication was conducted using both statistical and block copolymers with low Ð. Friction test results using a reciprocating sliding machine (SRV) showed that the block copolymers were less likely to desorb from the metal surface than the statistical copolymers. In addition, the wear evaluation after the SRV test showed that the block copolymer had less wear and less wear debris.
期刊介绍:
Lubrication Science is devoted to high-quality research which notably advances fundamental and applied aspects of the science and technology related to lubrication. It publishes research articles, short communications and reviews which demonstrate novelty and cutting edge science in the field, aiming to become a key specialised venue for communicating advances in lubrication research and development.
Lubrication is a diverse discipline ranging from lubrication concepts in industrial and automotive engineering, solid-state and gas lubrication, micro & nanolubrication phenomena, to lubrication in biological systems. To investigate these areas the scope of the journal encourages fundamental and application-based studies on:
Synthesis, chemistry and the broader development of high-performing and environmentally adapted lubricants and additives.
State of the art analytical tools and characterisation of lubricants, lubricated surfaces and interfaces.
Solid lubricants, self-lubricating coatings and composites, lubricating nanoparticles.
Gas lubrication.
Extreme-conditions lubrication.
Green-lubrication technology and lubricants.
Tribochemistry and tribocorrosion of environment- and lubricant-interface interactions.
Modelling of lubrication mechanisms and interface phenomena on different scales: from atomic and molecular to mezzo and structural.
Modelling hydrodynamic and thin film lubrication.
All lubrication related aspects of nanotribology.
Surface-lubricant interface interactions and phenomena: wetting, adhesion and adsorption.
Bio-lubrication, bio-lubricants and lubricated biological systems.
Other novel and cutting-edge aspects of lubrication in all lubrication regimes.