Computing f ‐divergences and distances of high‐dimensional probability density functions

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-09-06 DOI:10.1002/nla.2467
A. Litvinenko, Y. Marzouk, H. Matthies, M. Scavino, Alessio Spantini
{"title":"Computing f ‐divergences and distances of high‐dimensional probability density functions","authors":"A. Litvinenko, Y. Marzouk, H. Matthies, M. Scavino, Alessio Spantini","doi":"10.1002/nla.2467","DOIUrl":null,"url":null,"abstract":"Very often, in the course of uncertainty quantification tasks or data analysis, one has to deal with high‐dimensional random variables. Here the interest is mainly to compute characterizations like the entropy, the Kullback–Leibler divergence, more general f$$ f $$ ‐divergences, or other such characteristics based on the probability density. The density is often not available directly, and it is a computational challenge to just represent it in a numerically feasible fashion in case the dimension is even moderately large. It is an even stronger numerical challenge to then actually compute said characteristics in the high‐dimensional case. In this regard it is proposed to approximate the discretized density in a compressed form, in particular by a low‐rank tensor. This can alternatively be obtained from the corresponding probability characteristic function, or more general representations of the underlying random variable. The mentioned characterizations need point‐wise functions like the logarithm. This normally rather trivial task becomes computationally difficult when the density is approximated in a compressed resp. low‐rank tensor format, as the point values are not directly accessible. The computations become possible by considering the compressed data as an element of an associative, commutative algebra with an inner product, and using matrix algorithms to accomplish the mentioned tasks. The representation as a low‐rank element of a high order tensor space allows to reduce the computational complexity and storage cost from exponential in the dimension to almost linear.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2467","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Very often, in the course of uncertainty quantification tasks or data analysis, one has to deal with high‐dimensional random variables. Here the interest is mainly to compute characterizations like the entropy, the Kullback–Leibler divergence, more general f$$ f $$ ‐divergences, or other such characteristics based on the probability density. The density is often not available directly, and it is a computational challenge to just represent it in a numerically feasible fashion in case the dimension is even moderately large. It is an even stronger numerical challenge to then actually compute said characteristics in the high‐dimensional case. In this regard it is proposed to approximate the discretized density in a compressed form, in particular by a low‐rank tensor. This can alternatively be obtained from the corresponding probability characteristic function, or more general representations of the underlying random variable. The mentioned characterizations need point‐wise functions like the logarithm. This normally rather trivial task becomes computationally difficult when the density is approximated in a compressed resp. low‐rank tensor format, as the point values are not directly accessible. The computations become possible by considering the compressed data as an element of an associative, commutative algebra with an inner product, and using matrix algorithms to accomplish the mentioned tasks. The representation as a low‐rank element of a high order tensor space allows to reduce the computational complexity and storage cost from exponential in the dimension to almost linear.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算高维概率密度函数的f -散度和距离
通常,在不确定性量化任务或数据分析过程中,必须处理高维随机变量。这里的兴趣主要是计算熵、Kullback–Leibler散度、更一般的f$$f$$散度或其他基于概率密度的特征。密度通常无法直接获得,在尺寸甚至中等大的情况下,仅以数字可行的方式表示密度是一个计算挑战。在高维情况下,实际计算所述特性是一个更大的数值挑战。在这方面,建议以压缩形式近似离散密度,特别是通过低阶张量。这可以从相应的概率特征函数或底层随机变量的更一般的表示中获得。上述特征需要像对数一样的逐点函数。当密度以压缩的形式近似时,这个通常相当琐碎的任务在计算上变得困难。低阶张量格式,因为无法直接访问点值。通过将压缩数据视为具有内积的结合交换代数的元素,并使用矩阵算法来完成上述任务,计算成为可能。作为高阶张量空间的低秩元素的表示允许将计算复杂度和存储成本从维度上的指数降低到几乎线性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1