The normal velocity of the population front in the "predator-prey" model

IF 2.6 4区 数学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Mathematical Modelling of Natural Phenomena Pub Date : 2022-08-18 DOI:10.1051/mmnp/2022039
Evgeniy Dats, Sergey Minaev, Vladimir Gubernov, Junnosuke Okajima
{"title":"The normal velocity of the population front in the \"predator-prey\" model","authors":"Evgeniy Dats, Sergey Minaev, Vladimir Gubernov, Junnosuke Okajima","doi":"10.1051/mmnp/2022039","DOIUrl":null,"url":null,"abstract":"The propagation of one and two-dimensional waves of populations are numerically investigated in the framework of the ``predator-prey'' model with the Arditi - Ginzburg trophic function. The propagation of prey and predator population waves and the propagation of co-existing populations' waves are considered. The simulations demonstrate that even in the case of an unstable quasi-equilibrium state of the system, which is established behind the front of a traveling wave, the propagation velocity of the joint population wave is a well-defined function. The calculated average propagation velocity of a cellular non-stationary wave front is determined uniquely for a given set of problem parameters.  The estimations of the wave propagation velocity are obtained for both the case of a plane and cellular wave fronts of populations. The structure and velocity of outward propagating circular cellular wave are investigated to clarify the local curvature and scaling effects on the wave dynamics.","PeriodicalId":18285,"journal":{"name":"Mathematical Modelling of Natural Phenomena","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling of Natural Phenomena","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/mmnp/2022039","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The propagation of one and two-dimensional waves of populations are numerically investigated in the framework of the ``predator-prey'' model with the Arditi - Ginzburg trophic function. The propagation of prey and predator population waves and the propagation of co-existing populations' waves are considered. The simulations demonstrate that even in the case of an unstable quasi-equilibrium state of the system, which is established behind the front of a traveling wave, the propagation velocity of the joint population wave is a well-defined function. The calculated average propagation velocity of a cellular non-stationary wave front is determined uniquely for a given set of problem parameters.  The estimations of the wave propagation velocity are obtained for both the case of a plane and cellular wave fronts of populations. The structure and velocity of outward propagating circular cellular wave are investigated to clarify the local curvature and scaling effects on the wave dynamics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
“捕食者-猎物”模型中种群前沿的法向速度
在具有Arditi-Ginzburg营养函数的“捕食者-猎物”模型框架内,对种群的一维和二维波的传播进行了数值研究。考虑了猎物和捕食者种群波动的传播以及共存种群的波动的传播。模拟表明,即使在行波前沿后面建立的系统的不稳定准平衡状态下,联合总体波的传播速度也是一个定义明确的函数。对于给定的一组问题参数,计算的蜂窝非平稳波前的平均传播速度是唯一确定的。对于平面波前和群体的细胞波前,都获得了波传播速度的估计。研究了向外传播的圆形细胞波的结构和速度,以阐明局部曲率和尺度效应对波动力学的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical Modelling of Natural Phenomena
Mathematical Modelling of Natural Phenomena MATHEMATICAL & COMPUTATIONAL BIOLOGY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
5.20
自引率
0.00%
发文量
46
审稿时长
6-12 weeks
期刊介绍: The Mathematical Modelling of Natural Phenomena (MMNP) is an international research journal, which publishes top-level original and review papers, short communications and proceedings on mathematical modelling in biology, medicine, chemistry, physics, and other areas. The scope of the journal is devoted to mathematical modelling with sufficiently advanced model, and the works studying mainly the existence and stability of stationary points of ODE systems are not considered. The scope of the journal also includes applied mathematics and mathematical analysis in the context of its applications to the real world problems. The journal is essentially functioning on the basis of topical issues representing active areas of research. Each topical issue has its own editorial board. The authors are invited to submit papers to the announced issues or to suggest new issues. Journal publishes research articles and reviews within the whole field of mathematical modelling, and it will continue to provide information on the latest trends and developments in this ever-expanding subject.
期刊最新文献
Nitric oxide transport in carotid bifurcation after different stent interventions: a numerical study COMBINED HORMONE AND BRACHY THERAPIES FOR THE TREATMENT OF PROSTATE CANCER Thermodynamical Modeling of Multiphase Flow System with Surface Tension and Flow On the epidemiological evolution of colistin-resistant Acinetobacter baumannii in the city of Valencia: an agent-based modelling approach Influence of the age structure on the stability in a tumor-immune model for chronic myeloid leukemia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1