Statistical Mechanics of Deep Learning

IF 14.3 1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Annual Review of Condensed Matter Physics Pub Date : 2020-03-16 DOI:10.1146/annurev-conmatphys-031119-050745
Yasaman Bahri, Jonathan Kadmon, Jeffrey Pennington, S. Schoenholz, Jascha Narain Sohl-Dickstein, S. Ganguli
{"title":"Statistical Mechanics of Deep Learning","authors":"Yasaman Bahri, Jonathan Kadmon, Jeffrey Pennington, S. Schoenholz, Jascha Narain Sohl-Dickstein, S. Ganguli","doi":"10.1146/annurev-conmatphys-031119-050745","DOIUrl":null,"url":null,"abstract":"The recent striking success of deep neural networks in machine learning raises profound questions about the theoretical principles underlying their success. For example, what can such deep networks...","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"11 1","pages":"501-528"},"PeriodicalIF":14.3000,"publicationDate":"2020-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-conmatphys-031119-050745","citationCount":"171","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-conmatphys-031119-050745","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 171

Abstract

The recent striking success of deep neural networks in machine learning raises profound questions about the theoretical principles underlying their success. For example, what can such deep networks...
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习统计力学
最近,深度神经网络在机器学习领域取得了惊人的成功,这引发了人们对其成功背后的理论原理的深刻质疑。例如,这样的深度网络……
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual Review of Condensed Matter Physics
Annual Review of Condensed Matter Physics PHYSICS, CONDENSED MATTER-
CiteScore
47.40
自引率
0.90%
发文量
27
期刊介绍: Since its inception in 2010, the Annual Review of Condensed Matter Physics has been chronicling significant advancements in the field and its related subjects. By highlighting recent developments and offering critical evaluations, the journal actively contributes to the ongoing discourse in condensed matter physics. The latest volume of the journal has transitioned from gated access to open access, facilitated by Annual Reviews' Subscribe to Open initiative. Under this program, all articles are now published under a CC BY license, ensuring broader accessibility and dissemination of knowledge.
期刊最新文献
Machine Learning for Climate Physics and Simulations From Fluctuations and Disorder to Scaling and Control: The Emergence of Resistance in Microbial Communities Activity Unmasks Chirality in Liquid-Crystalline Matter High-Order Van Hove Singularities and Their Connection to Flat Bands Emergent Simplicities in the Living Histories of Individual Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1