Experimental investigation and controllability study of electrochemical actuators based on Si/CNTs composite material

IF 2.7 4区 工程技术 Q3 ELECTROCHEMISTRY Journal of Electrochemical Energy Conversion and Storage Pub Date : 2023-07-27 DOI:10.1115/1.4063057
Zhilin Wu, Xiaobing Yang, Kai Sheng, Dawei Li
{"title":"Experimental investigation and controllability study of electrochemical actuators based on Si/CNTs composite material","authors":"Zhilin Wu, Xiaobing Yang, Kai Sheng, Dawei Li","doi":"10.1115/1.4063057","DOIUrl":null,"url":null,"abstract":"\n Electrochemical actuators can convert electrical energy into mechanical energy directly and have been applied widely. With a large volume expansion in the electrochemical reaction, silicon material demonstrates enormous potential in the manufacture of the electrochemical actuators. Here, we propose a new electrochemical actuator based on Si/CNTs composite electrode. A mathematical model is developed to analyze the relationship among material parameters, structural changes, and bending deformation. The curvature changes of the cantilever beam are captured by a CCD camera during electrochemical cycling. Combining the model and bending curvatures, the modulus and swell strain are extracted and detailed analyzed. Here, the elastic modulus of the composite electrode softens and decreases from 9.59 GPa to 4.78 GPa, while the swell strain increases from 0.12% to 2.97% when arriving 6% normalized concentration of lithium. These results show that the composite material possesses excellent bending resistance and deformation ability. Also, the curvature changes under different thickness ratios are predicted successfully, the evolution of stress in the working electrode is simulated, and the loading experiment of the actuator is carried out. This work provides a new way to realize the controllability of the electrochemical actuators.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrochemical Energy Conversion and Storage","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063057","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical actuators can convert electrical energy into mechanical energy directly and have been applied widely. With a large volume expansion in the electrochemical reaction, silicon material demonstrates enormous potential in the manufacture of the electrochemical actuators. Here, we propose a new electrochemical actuator based on Si/CNTs composite electrode. A mathematical model is developed to analyze the relationship among material parameters, structural changes, and bending deformation. The curvature changes of the cantilever beam are captured by a CCD camera during electrochemical cycling. Combining the model and bending curvatures, the modulus and swell strain are extracted and detailed analyzed. Here, the elastic modulus of the composite electrode softens and decreases from 9.59 GPa to 4.78 GPa, while the swell strain increases from 0.12% to 2.97% when arriving 6% normalized concentration of lithium. These results show that the composite material possesses excellent bending resistance and deformation ability. Also, the curvature changes under different thickness ratios are predicted successfully, the evolution of stress in the working electrode is simulated, and the loading experiment of the actuator is carried out. This work provides a new way to realize the controllability of the electrochemical actuators.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Si/CNTs复合材料的电化学致动器的实验研究与可控性研究
电化学执行器能将电能直接转化为机械能,得到了广泛的应用。硅材料在电化学反应中具有较大的体积膨胀性,在电化学致动器的制造中显示出巨大的潜力。本文提出了一种基于Si/CNTs复合电极的电化学致动器。建立了一个数学模型来分析材料参数、结构变化和弯曲变形之间的关系。利用CCD相机捕捉电化学循环过程中悬臂梁的曲率变化。结合模型和弯曲曲率,提取了模量和膨胀应变,并对其进行了详细分析。当锂浓度达到6%时,复合电极的弹性模量从9.59 GPa下降到4.78 GPa,膨胀应变从0.12%增加到2.97%。结果表明,该复合材料具有优异的抗弯性能和变形能力。成功预测了不同厚度比下的曲率变化,模拟了工作电极的应力演化,并进行了执行器的加载实验。为实现电化学执行器的可控性提供了一条新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.90
自引率
4.00%
发文量
69
期刊介绍: The Journal of Electrochemical Energy Conversion and Storage focuses on processes, components, devices and systems that store and convert electrical and chemical energy. This journal publishes peer-reviewed archival scholarly articles, research papers, technical briefs, review articles, perspective articles, and special volumes. Specific areas of interest include electrochemical engineering, electrocatalysis, novel materials, analysis and design of components, devices, and systems, balance of plant, novel numerical and analytical simulations, advanced materials characterization, innovative material synthesis and manufacturing methods, thermal management, reliability, durability, and damage tolerance.
期刊最新文献
Black-Fe2O3 Polyhedron-Assembled 3D Film Electrode with Enhanced Conductivity and Energy Density for Aqueous Solid-State Energy Storage Critical Review of Hydrogen Production via Seawater Electrolysis and Desalination: Evaluating Current Practices Internal temperature estimation of lithium-ion battery based on improved electro-thermal coupling model and ANFIS Supercapacitor voltage doubling equalization method based on adaptive grouping A High Ceramic Loading LATP-PVDF-Al2O3 Composite Film for Lithium-ion Batteries with Favorable Porous Microstructure and Enhanced Thermal Stability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1