H. Moustafa, S. El‐Mogy, S. Ibrahim, A. Awad, N. Darwish
{"title":"Bioenveloping Inorganic Filler-Based Eggshell Wastes for Enhancing the Properties of Natural Rubber Biocomposites","authors":"H. Moustafa, S. El‐Mogy, S. Ibrahim, A. Awad, N. Darwish","doi":"10.2346/tire.20.20002","DOIUrl":null,"url":null,"abstract":"\n In this study, eggshell (ES) wastes were used as a renewable reinforcing material in natural rubber (NR) composite to limit carbon production. Long bio-alkyd resin (LAR) was also used to envelope the inorganic ES particles and to aid in dispersing the filler in the NR matrix. The effect of the coated ES filler (ESR) in the rubber mix on the morphology, mechanical properties, and swelling was investigated. The ES filler and its biocomposites were characterized by X-ray fluorescence, scanning electron microscopy, Fourier transform infrared imaging microscope (FT-IR-IM), differential scanning calorimetry (DSC), and thermogravimetric analysis. The morphological data reveal that the resin enhances the dispersion of the ES filler in the NR matrix. These data were confirmed by the results obtained from FT-IR-IM. The swelling and mechanical properties were significantly improved when the coated filler was used in NR matrix, especially at 20 wt.% ESR. DSC thermograms revealed that the increase in the resin caused the glass transition temperature (Tg) to be shifted to a lower temperature. The obtained results show that the bioenveloping ESR can be used as potential alternative for green tire and vehicle applications rather than conventional petroleum-based filler.","PeriodicalId":44601,"journal":{"name":"Tire Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tire Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2346/tire.20.20002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1
Abstract
In this study, eggshell (ES) wastes were used as a renewable reinforcing material in natural rubber (NR) composite to limit carbon production. Long bio-alkyd resin (LAR) was also used to envelope the inorganic ES particles and to aid in dispersing the filler in the NR matrix. The effect of the coated ES filler (ESR) in the rubber mix on the morphology, mechanical properties, and swelling was investigated. The ES filler and its biocomposites were characterized by X-ray fluorescence, scanning electron microscopy, Fourier transform infrared imaging microscope (FT-IR-IM), differential scanning calorimetry (DSC), and thermogravimetric analysis. The morphological data reveal that the resin enhances the dispersion of the ES filler in the NR matrix. These data were confirmed by the results obtained from FT-IR-IM. The swelling and mechanical properties were significantly improved when the coated filler was used in NR matrix, especially at 20 wt.% ESR. DSC thermograms revealed that the increase in the resin caused the glass transition temperature (Tg) to be shifted to a lower temperature. The obtained results show that the bioenveloping ESR can be used as potential alternative for green tire and vehicle applications rather than conventional petroleum-based filler.
期刊介绍:
Tire Science and Technology is the world"s leading technical journal dedicated to tires. The Editor publishes original contributions that address the development and application of experimental, analytical, or computational science in which the tire figures prominently. Review papers may also be published. The journal aims to assure its readers authoritative, critically reviewed articles and the authors accessibility of their work in the permanent literature. The journal is published quarterly by the Tire Society, Inc., an Ohio not-for-profit corporation whose objective is to increase and disseminate knowledge of the science and technology of tires.