Accurate determination of the kinetics of toluene nitration in a liquid–liquid microflow system

IF 2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Journal of Flow Chemistry Pub Date : 2023-05-22 DOI:10.1007/s41981-023-00271-3
Jing Song, Yongjin Cui, Yujun Wang, Kai Wang, Jian Deng, Guangsheng Luo
{"title":"Accurate determination of the kinetics of toluene nitration in a liquid–liquid microflow system","authors":"Jing Song,&nbsp;Yongjin Cui,&nbsp;Yujun Wang,&nbsp;Kai Wang,&nbsp;Jian Deng,&nbsp;Guangsheng Luo","doi":"10.1007/s41981-023-00271-3","DOIUrl":null,"url":null,"abstract":"<div><p>The nitration of toluene with mixed acid is one of the most representative nitration reactions. Accurate kinetic study is essential for controlling the reaction and designing reactors. Due to the characteristics of fast rate, high exothermicity and heterogeneity in toluene nitration, the effects of mass and heat transfer may result in inaccurate determination of kinetics. In this work, the adiabatic temperature rises of the reaction system were studied to provide precise ranges of experimental conditions for accurately controlling the reaction rate and heat release rate in a liquid–liquid microflow system. The adiabatic temperature rise was successfully controlled to below 0.3 °C. The effects of mass and heat transfer on the reaction rate were completely eliminated, so that the kinetic study was carried out under the control of intrinsic kinetics only. The activation energy for toluene nitration was determined to be 28.00 kJ/mol. The activation energies for the formation of <i>o</i>-nitrotoluene and <i>p</i>-nitrotoluene were obtained for the first time, which were 25.71 and 31.91 kJ/mol, respectively. The obtained kinetic models can predict the reaction performance of toluene nitration very well.\n</p></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"13 3","pages":"311 - 323"},"PeriodicalIF":2.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flow Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41981-023-00271-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

The nitration of toluene with mixed acid is one of the most representative nitration reactions. Accurate kinetic study is essential for controlling the reaction and designing reactors. Due to the characteristics of fast rate, high exothermicity and heterogeneity in toluene nitration, the effects of mass and heat transfer may result in inaccurate determination of kinetics. In this work, the adiabatic temperature rises of the reaction system were studied to provide precise ranges of experimental conditions for accurately controlling the reaction rate and heat release rate in a liquid–liquid microflow system. The adiabatic temperature rise was successfully controlled to below 0.3 °C. The effects of mass and heat transfer on the reaction rate were completely eliminated, so that the kinetic study was carried out under the control of intrinsic kinetics only. The activation energy for toluene nitration was determined to be 28.00 kJ/mol. The activation energies for the formation of o-nitrotoluene and p-nitrotoluene were obtained for the first time, which were 25.71 and 31.91 kJ/mol, respectively. The obtained kinetic models can predict the reaction performance of toluene nitration very well.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
液-液微流系统中甲苯硝化动力学的精确测定
混合酸对甲苯的硝化反应是最具代表性的硝化反应之一。准确的动力学研究是控制反应和设计反应器的必要条件。由于甲苯硝化反应速率快、放热性强、非均质性强等特点,传质和传热的影响可能导致动力学测定不准确。本文研究了反应体系的绝热温升,为精确控制液-液微流系统的反应速率和放热速率提供了精确的实验条件范围。绝热温升控制在0.3℃以下。完全消除了传质和传热对反应速率的影响,使动力学研究仅在本征动力学控制下进行。甲苯硝化反应的活化能为28.00 kJ/mol。首次得到了邻硝基甲苯和对硝基甲苯的生成活化能,分别为25.71和31.91 kJ/mol。所建立的动力学模型可以很好地预测甲苯硝化反应的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Flow Chemistry
Journal of Flow Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
6.40
自引率
3.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: The main focus of the journal is flow chemistry in inorganic, organic, analytical and process chemistry in the academic research as well as in applied research and development in the pharmaceutical, agrochemical, fine-chemical, petro- chemical, fragrance industry.
期刊最新文献
Rapid and practical synthesis of N-protected amino ketones in continuous flow via pre-deprotonation protocol Expedited access to β-lactams via a telescoped three-component Staudinger reaction in flow Efficient “One-Column” grignard generation and reaction in continuous flow Two deep learning methods in comparison to characterize droplet sizes in emulsification flow processes Enhanced emulsification process between viscous liquids in an ultrasonic capillary microreactor: mechanism analysis and application in nano-emulsion preparation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1