{"title":"Improving the classification performance with group lasso-based ranking method in high dimensional correlated data","authors":"Abhijeet R. Patil, Bong-Jin Choi, Sangjin Kim","doi":"10.1142/s021963362040009x","DOIUrl":null,"url":null,"abstract":"The high-throughput correlated DNA methylation (DNAmeth) dataset generated from Illumina Infinium Human Methylation 27 (IIHM 27K) BeadChip assay. In the DNAmeth data, there are several CpG sites for every gene, and these grouped CpG sites are highly correlated. Most of the current filtering-based ranking (FBR) methods do not consider the group correlation structures. Obtaining the significant features with the FBR methods and applying these features to the classifiers to attain the best classification accuracy in highly correlated DNAmeth data is a challenging task. In this research, we introduce a resampling of group least absolute shrinkage and selection operator (glasso) FBR method capable of ignoring the unrelated features in the data considering the group correlation among the features. The various classifiers, such as random forests (RF), Naive Bayes (NB), and support vector machines (SVM) with the significant CpGs obtained from the proposed resampling of group lasso-based ranking (RGLR) method helped to boost the classification accuracy. Through simulated and experimental prostate DNAmeth data, we showed that higher performance of accuracy, sensitivity, specificity, and geometric mean is achieved by ignoring the unimportant CpG sites through the RGLR method.","PeriodicalId":49976,"journal":{"name":"Journal of Theoretical & Computational Chemistry","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s021963362040009x","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical & Computational Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s021963362040009x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1
Abstract
The high-throughput correlated DNA methylation (DNAmeth) dataset generated from Illumina Infinium Human Methylation 27 (IIHM 27K) BeadChip assay. In the DNAmeth data, there are several CpG sites for every gene, and these grouped CpG sites are highly correlated. Most of the current filtering-based ranking (FBR) methods do not consider the group correlation structures. Obtaining the significant features with the FBR methods and applying these features to the classifiers to attain the best classification accuracy in highly correlated DNAmeth data is a challenging task. In this research, we introduce a resampling of group least absolute shrinkage and selection operator (glasso) FBR method capable of ignoring the unrelated features in the data considering the group correlation among the features. The various classifiers, such as random forests (RF), Naive Bayes (NB), and support vector machines (SVM) with the significant CpGs obtained from the proposed resampling of group lasso-based ranking (RGLR) method helped to boost the classification accuracy. Through simulated and experimental prostate DNAmeth data, we showed that higher performance of accuracy, sensitivity, specificity, and geometric mean is achieved by ignoring the unimportant CpG sites through the RGLR method.
期刊介绍:
The Journal of Theoretical and Computational Chemistry (JTCC) is an international interdisciplinary journal aimed at providing comprehensive coverage on the latest developments and applications of research in the ever-expanding field of theoretical and computational chemistry.
JTCC publishes regular articles and reviews on new methodology, software, web server and database developments. The applications of existing theoretical and computational methods which produce significant new insights into important problems are also welcomed. Papers reporting joint computational and experimental investigations are encouraged. The journal will not consider manuscripts reporting straightforward calculations of the properties of molecules with existing software packages without addressing a significant scientific problem.
Areas covered by the journal include molecular dynamics, computer-aided molecular design, modeling effects of mutation on stability and dynamics of macromolecules, quantum mechanics, statistical mechanics and other related topics.