{"title":"The ripple-curry amplifier in photonic applications","authors":"M. Gilewski","doi":"10.4302/plp.v14i4.1187","DOIUrl":null,"url":null,"abstract":"This paper discusses the new design of a amplifier for the miniature MEMS-type spectrometer. The application problem of the new amplifier was the correct conditioning of the sensor's photoelectric pulses. The processed signal was a sequence of pulses that had variable both frequency and amplitude value. Thus, such a broadband amplifier should have the functionality of automatic gain control. This paper describes the concept of the new circuit, develops its detailed application, and then performs validation tests. Measurement results of the new circuit are discussed in the final section of the paper. Full Text: PDF ReferencesC. Ortolani, Flow Cytometry Today. Detectors and Electronics, (Springer 2022). pp. 97-119, CrossRef D. Maes, L. Reis, S. Poelman, E. Vissers, V. Avramovic, M. Zaknoune, G. Roelkens, S. Lemey, E. Peytavit, B. Kuyken, \"High-Speed Photodiodes on Silicon Nitride with a Bandwidth beyond 100 GHz\", Conference on Lasers and Electro-Optics, Optica Publishing Group, (2022). CrossRef R. Das, Y. Xie, A.P. Knights, \"All-Silicon Low Noise Photonic Frontend For LIDAR Applications\", 2022 IEEE Photonics Conference (IPC), IEEE Xplore (2022). CrossRef FEMTO Messtechnik GmbH, Variable Gain Photoreceiver - Fast Optical Power Meter Series OE-200, DirectLink M. Nehir, C. Frank, S. Aßmann, E.P. Achterberg, \"Improving Optical Measurements: Non-Linearity Compensation of Compact Charge-Coupled Device (CCD) Spectrometers\", Sensors 19(12), 2833 (2019). CrossRef F. Thomas,; R. Petzold, C. Becker, U. Werban, \"Application of Low-Cost MEMS Spectrometers for Forest Topsoil Properties Prediction\", Sensors 21(11), 3927 (2021). CrossRef M. Muhiyudin, D. Hutson, D. Gibson, E. Waddell, S. Song, S. Ahmadzadeh, \"Miniaturised Infrared Spectrophotometer for Low Power Consumption Multi-Gas Sensing\", Sensors 20(14), 3843 (2020). CrossRef S. Maruyama, T Hizawa, K. Takahashi, K. Sawada, \"Optical-Interferometry-Based CMOS-MEMS Sensor Transduced by Stress-Induced Nanomechanical Deflection\", Sensors 18(1), 138 (2018). CrossRef S. Merlo, P. Poma, E. Crisà, D. Faralli, M. Soldo, \"Testing of Piezo-Actuated Glass Micro-Membranes by Optical Low-Coherence Reflectometry\", Sensors 17(3), 8 (2017). CrossRef M.S. Wei, F. Xing, B. Li, Z. You, \"Investigation of Digital Sun Sensor Technology with an N-Shaped Slit Mask\", Sensors 11(10), 9764 (2011). CrossRef Z. Yang, T. Albrow-Owen, W. Cai, T. Hasan, \"Miniaturization of optical spectrometers\", Science 371, 6528 (2021). CrossRef Hamamatsu Photonics K.K. Fingertip size, ultra-compact spectrometer head integrating MEMS and image sensor technologies. DirectLink Microchip Technology Inc, MCP6291/1R/2/3/4/5 1.0 mA 10 MHz Rail-to-Rail Op Amp, CrossRef Microchip Technology Inc. MCP6021/1R/2/3/4 Rail-to-Rail Input/Output 10 MHz Op Amps, CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Letters of Poland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4302/plp.v14i4.1187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 1
Abstract
This paper discusses the new design of a amplifier for the miniature MEMS-type spectrometer. The application problem of the new amplifier was the correct conditioning of the sensor's photoelectric pulses. The processed signal was a sequence of pulses that had variable both frequency and amplitude value. Thus, such a broadband amplifier should have the functionality of automatic gain control. This paper describes the concept of the new circuit, develops its detailed application, and then performs validation tests. Measurement results of the new circuit are discussed in the final section of the paper. Full Text: PDF ReferencesC. Ortolani, Flow Cytometry Today. Detectors and Electronics, (Springer 2022). pp. 97-119, CrossRef D. Maes, L. Reis, S. Poelman, E. Vissers, V. Avramovic, M. Zaknoune, G. Roelkens, S. Lemey, E. Peytavit, B. Kuyken, "High-Speed Photodiodes on Silicon Nitride with a Bandwidth beyond 100 GHz", Conference on Lasers and Electro-Optics, Optica Publishing Group, (2022). CrossRef R. Das, Y. Xie, A.P. Knights, "All-Silicon Low Noise Photonic Frontend For LIDAR Applications", 2022 IEEE Photonics Conference (IPC), IEEE Xplore (2022). CrossRef FEMTO Messtechnik GmbH, Variable Gain Photoreceiver - Fast Optical Power Meter Series OE-200, DirectLink M. Nehir, C. Frank, S. Aßmann, E.P. Achterberg, "Improving Optical Measurements: Non-Linearity Compensation of Compact Charge-Coupled Device (CCD) Spectrometers", Sensors 19(12), 2833 (2019). CrossRef F. Thomas,; R. Petzold, C. Becker, U. Werban, "Application of Low-Cost MEMS Spectrometers for Forest Topsoil Properties Prediction", Sensors 21(11), 3927 (2021). CrossRef M. Muhiyudin, D. Hutson, D. Gibson, E. Waddell, S. Song, S. Ahmadzadeh, "Miniaturised Infrared Spectrophotometer for Low Power Consumption Multi-Gas Sensing", Sensors 20(14), 3843 (2020). CrossRef S. Maruyama, T Hizawa, K. Takahashi, K. Sawada, "Optical-Interferometry-Based CMOS-MEMS Sensor Transduced by Stress-Induced Nanomechanical Deflection", Sensors 18(1), 138 (2018). CrossRef S. Merlo, P. Poma, E. Crisà, D. Faralli, M. Soldo, "Testing of Piezo-Actuated Glass Micro-Membranes by Optical Low-Coherence Reflectometry", Sensors 17(3), 8 (2017). CrossRef M.S. Wei, F. Xing, B. Li, Z. You, "Investigation of Digital Sun Sensor Technology with an N-Shaped Slit Mask", Sensors 11(10), 9764 (2011). CrossRef Z. Yang, T. Albrow-Owen, W. Cai, T. Hasan, "Miniaturization of optical spectrometers", Science 371, 6528 (2021). CrossRef Hamamatsu Photonics K.K. Fingertip size, ultra-compact spectrometer head integrating MEMS and image sensor technologies. DirectLink Microchip Technology Inc, MCP6291/1R/2/3/4/5 1.0 mA 10 MHz Rail-to-Rail Op Amp, CrossRef Microchip Technology Inc. MCP6021/1R/2/3/4 Rail-to-Rail Input/Output 10 MHz Op Amps, CrossRef
本文讨论了微型mems型光谱仪放大器的新设计。新型放大器的应用问题是传感器光电脉冲的正确调理。处理后的信号是频率和幅值可变的脉冲序列。因此,这种宽带放大器应该具有自动增益控制的功能。本文介绍了新电路的概念,详细介绍了其应用,并进行了验证测试。最后对新电路的测试结果进行了讨论。全文:PDFOrtolani,《今日流式细胞术》探测器与电子学,(施普林格2022)。p. 97-119, CrossRef D. Maes, L. Reis, S. Poelman, E. Vissers, V. Avramovic, M. Zaknoune, G. Roelkens, S. Lemey, E. Peytavit, B. Kuyken,“带宽超过100ghz的氮化硅高速光电二极管”,激光与电光会议,光学出版集团,(2022)。CrossRef R. Das, Y. Xie, A.P. Knights,“用于激光雷达的全硅低噪声光子前端”,2022年IEEE光子学会议(IPC), IEEE Xplore(2022)。M. Nehir, C. Frank, S. Aßmann, E.P. Achterberg,“改进光学测量:紧凑型电荷耦合器件(CCD)光谱仪的非线性补偿”,传感器19(12),2833(2019)。克罗斯·托马斯,;李建军,刘建军,刘建军,“低成本MEMS光谱仪在森林表层土壤特性预测中的应用”,中国林业大学学报(自然科学版),21(11),3927(2021)。交叉参考M. Muhiyudin, D. Hutson, D. Gibson, E. Waddell, S. Song, S. Ahmadzadeh,“低功耗多气体传感的小型化红外分光光度计”,传感器20(14),3843(2020)。陈晓明,张晓明,张晓明,“基于光干涉测量的CMOS-MEMS传感器”,光子学报,18(1),39(2018)。CrossRef S. Merlo, P. Poma, E. cris, D. Faralli, M. Soldo,“压电驱动玻璃微膜的光学低相干反射测试”,传感器,17(3),8(2017)。魏明生,邢峰,李斌,由忠,“基于n型掩模的数字太阳敏感器技术研究”,光子学报,11(10),9764(2011)。CrossRef杨志强,蔡文强,“光学光谱仪的小型化”,《科学》371,6528(2021)。CrossRef Hamamatsu Photonics K.K.指尖尺寸,集成MEMS和图像传感器技术的超紧凑光谱仪头。DirectLink Microchip Technology Inc, MCP6291/1R/2/3/4/5 1.0 mA 10 MHz Rail-to-Rail运放,CrossRef Microchip Technology IncMCP6021/1R/2/3/4轨对轨输入/输出10mhz运放,交叉ref