Soonseok Song, S. Dai, Y. Demirel, M. Atlar, S. Day, O. Turan
{"title":"Experimental and Theoretical Study of the Effect of Hull Roughness on Ship Resistance","authors":"Soonseok Song, S. Dai, Y. Demirel, M. Atlar, S. Day, O. Turan","doi":"10.5957/JOSR.07190040","DOIUrl":null,"url":null,"abstract":"Hull roughness increases ship frictional resistance and thus results in economic and environmental penalties. Its effect has been prevalently predicted using the similarity law scaling procedure, presented by Granville (1958; 1978). However, this method has not yet been validated with experimental data using a model ship. This paper presents an experimental investigation into the effect of roughness on ship resistance and provides a validation of the similarity law scaling, by using tank testing of a flat plate and a model ship. Both the plate and the ship were tested in smooth and rough surface conditions, respectively. For the rough surface conditions, sand grit (aluminium oxide abrasive powder) was applied on the surfaces of the flat plate and the ship model. The roughness functions of the rough surface were derived by using the results obtained from the flat plate tests. Using the roughness function and the flat plate towing test, the frictional resistance was extrapolated to the length of the model ship following the similarity law scaling procedure. The total resistance of the rough ship model was first predicted using the extrapolated frictional resistance and the result of the smooth ship model, and then compared with the results from the rough ship model. The predicted total resistance coefficients for the rough ship model showed good agreement with the measured total resistance coefficient of the rough ship model; thus proving the validity of using Granville’s similarity law scaling to extrapolate the roughness effect on ship resistance.","PeriodicalId":50052,"journal":{"name":"Journal of Ship Research","volume":"65 1","pages":"1-10"},"PeriodicalIF":1.3000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ship Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5957/JOSR.07190040","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 17
Abstract
Hull roughness increases ship frictional resistance and thus results in economic and environmental penalties. Its effect has been prevalently predicted using the similarity law scaling procedure, presented by Granville (1958; 1978). However, this method has not yet been validated with experimental data using a model ship. This paper presents an experimental investigation into the effect of roughness on ship resistance and provides a validation of the similarity law scaling, by using tank testing of a flat plate and a model ship. Both the plate and the ship were tested in smooth and rough surface conditions, respectively. For the rough surface conditions, sand grit (aluminium oxide abrasive powder) was applied on the surfaces of the flat plate and the ship model. The roughness functions of the rough surface were derived by using the results obtained from the flat plate tests. Using the roughness function and the flat plate towing test, the frictional resistance was extrapolated to the length of the model ship following the similarity law scaling procedure. The total resistance of the rough ship model was first predicted using the extrapolated frictional resistance and the result of the smooth ship model, and then compared with the results from the rough ship model. The predicted total resistance coefficients for the rough ship model showed good agreement with the measured total resistance coefficient of the rough ship model; thus proving the validity of using Granville’s similarity law scaling to extrapolate the roughness effect on ship resistance.
期刊介绍:
Original and Timely technical papers addressing problems of shipyard techniques and production of merchant and naval ships appear in this quarterly publication. Since its inception, the Journal of Ship Production and Design (formerly the Journal of Ship Production) has been a forum for peer-reviewed, professionally edited papers from academic and industry sources. As such, it has influenced the worldwide development of ship production engineering as a fully qualified professional discipline. The expanded scope seeks papers in additional areas, specifically ship design, including design for production, plus other marine technology topics, such as ship operations, shipping economic, and safety. Each issue contains a well-rounded selection of technical papers relevant to marine professionals.