Implemented PSO-NBC and PSO-SVM to Help Determine Status of Volcanoes

F. Tempola
{"title":"Implemented PSO-NBC and PSO-SVM to Help Determine Status of Volcanoes","authors":"F. Tempola","doi":"10.17933/jppi.2019.090202","DOIUrl":null,"url":null,"abstract":"This research is a continuation of previous research that applied the Naive Bayes classifier algorithm to predict the status of volcanoes in Indonesia based on seismic factors. There are five attributes used in predicting the status of volcanoes, namely the status of the normal, standby and alerts. The results Showed the accuracy of the resulted prediction was only 79.31%, or fell into fair classification. To overcome these weaknesses and in order to increase accuracy, optimization is done by giving criteria or attribute weights using particle swarm optimization. This research compared the optimization of Naive Bayes algorithm to vector machine support using particle swarm optimization. The research found improvement on system after application of PSO-NBC to that of 91.3 % and 92.86% after applying PSO-SVM.","PeriodicalId":31332,"journal":{"name":"Jurnal Penelitian Pos dan Informatika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Penelitian Pos dan Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17933/jppi.2019.090202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This research is a continuation of previous research that applied the Naive Bayes classifier algorithm to predict the status of volcanoes in Indonesia based on seismic factors. There are five attributes used in predicting the status of volcanoes, namely the status of the normal, standby and alerts. The results Showed the accuracy of the resulted prediction was only 79.31%, or fell into fair classification. To overcome these weaknesses and in order to increase accuracy, optimization is done by giving criteria or attribute weights using particle swarm optimization. This research compared the optimization of Naive Bayes algorithm to vector machine support using particle swarm optimization. The research found improvement on system after application of PSO-NBC to that of 91.3 % and 92.86% after applying PSO-SVM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现PSO-NBC和PSO-SVM帮助确定火山状态
本研究是以往基于地震因素应用朴素贝叶斯分类器算法预测印尼火山状态研究的延续。有五个属性用于预测火山的状态,即正常状态,待机状态和警报状态。结果表明,所得预测准确率仅为79.31%,属于一般分类。为了克服这些缺点并提高准确性,优化是通过使用粒子群优化给出标准或属性权重来完成的。本研究将朴素贝叶斯算法的优化与向量机支持的粒子群优化进行了比较。研究发现,应用PSO-NBC后,系统的改进率分别为91.3%和92.86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3 weeks
期刊最新文献
Pengaruh Literasi Informasi terhadap Penggunaan E-Resources Mahasiswa STMIK Tasikmalaya dengan PLS-MGA Integration of Low Interaction Honeypot and ELK Stack as Attack Detection Systems on Servers Analisis Aspek-aspek Kepatuhan Penyelenggara Pos di Indonesia Analisis Penerapan Teknologi Informasi dalam Mendukung Pengembangan Local E-Government Pengembangan Talenta Nasional bidang Riset dan Inovasi melalui Perencanaan Pelatihan TIK berbasis Gender untuk ASN dan Masyarakat
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1