J. Frieling, S. Bohaty, M. Cramwinckel, S. Gallagher, G. Holdgate, T. Reichgelt, F. Peterse, J. Pross, A. Sluijs, P. Bijl
{"title":"Revisiting the Geographical Extent of Exceptional Warmth in the Early Paleogene Southern Ocean","authors":"J. Frieling, S. Bohaty, M. Cramwinckel, S. Gallagher, G. Holdgate, T. Reichgelt, F. Peterse, J. Pross, A. Sluijs, P. Bijl","doi":"10.1029/2022PA004529","DOIUrl":null,"url":null,"abstract":"To assess zonal temperature and biogeographical patterns in the Southern Ocean during the Paleogene, we present new multi‐proxy air‐ and sea‐surface temperature data for the latest Paleocene (∼57–56 Ma) and the Paleocene‐Eocene Thermal Maximum (PETM; ∼56 Ma) from the northern margin of the Australo‐Antarctic Gulf (AAG). The various proxy data sets document the well‐known late Paleocene warming and, superimposed, two transient late Paleocene pre‐cursor warming events, hundreds of kyr prior to the PETM. Remarkably, temperature reconstructions for the AAG and southwest Pacific during the latest Paleocene, PETM and Early Eocene Climatic Optimum (∼53–49 Ma) show similar trends as well as similar absolute temperatures east and west of the closed Tasmanian Gateway. Our data imply that the exceptional warmth as recorded by previous studies for the southwest Pacific extended westward into the AAG. This contrasts with modeling‐derived circulation and temperature patterns. We suggest that simulations of ocean circulation underestimate heat transport in the southwest Pacific due to insufficient resolution, not allowing for mesoscale eddy‐related heat transport. We argue for a systematic approach to tackle model and proxy biases that may occur in marginal marine settings and non‐analog high‐latitude climates to assess the temperature reconstructions.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography and Paleoclimatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2022PA004529","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To assess zonal temperature and biogeographical patterns in the Southern Ocean during the Paleogene, we present new multi‐proxy air‐ and sea‐surface temperature data for the latest Paleocene (∼57–56 Ma) and the Paleocene‐Eocene Thermal Maximum (PETM; ∼56 Ma) from the northern margin of the Australo‐Antarctic Gulf (AAG). The various proxy data sets document the well‐known late Paleocene warming and, superimposed, two transient late Paleocene pre‐cursor warming events, hundreds of kyr prior to the PETM. Remarkably, temperature reconstructions for the AAG and southwest Pacific during the latest Paleocene, PETM and Early Eocene Climatic Optimum (∼53–49 Ma) show similar trends as well as similar absolute temperatures east and west of the closed Tasmanian Gateway. Our data imply that the exceptional warmth as recorded by previous studies for the southwest Pacific extended westward into the AAG. This contrasts with modeling‐derived circulation and temperature patterns. We suggest that simulations of ocean circulation underestimate heat transport in the southwest Pacific due to insufficient resolution, not allowing for mesoscale eddy‐related heat transport. We argue for a systematic approach to tackle model and proxy biases that may occur in marginal marine settings and non‐analog high‐latitude climates to assess the temperature reconstructions.
期刊介绍:
Paleoceanography and Paleoclimatology (PALO) publishes papers dealing with records of past environments, biota and climate. Understanding of the Earth system as it was in the past requires the employment of a wide range of approaches including marine and lacustrine sedimentology and speleothems; ice sheet formation and flow; stable isotope, trace element, and organic geochemistry; paleontology and molecular paleontology; evolutionary processes; mineralization in organisms; understanding tree-ring formation; seismic stratigraphy; physical, chemical, and biological oceanography; geochemical, climate and earth system modeling, and many others. The scope of this journal is regional to global, rather than local, and includes studies of any geologic age (Precambrian to Quaternary, including modern analogs). Within this framework, papers on the following topics are to be included: chronology, stratigraphy (where relevant to correlation of paleoceanographic events), paleoreconstructions, paleoceanographic modeling, paleocirculation (deep, intermediate, and shallow), paleoclimatology (e.g., paleowinds and cryosphere history), global sediment and geochemical cycles, anoxia, sea level changes and effects, relations between biotic evolution and paleoceanography, biotic crises, paleobiology (e.g., ecology of “microfossils” used in paleoceanography), techniques and approaches in paleoceanographic inferences, and modern paleoceanographic analogs, and quantitative and integrative analysis of coupled ocean-atmosphere-biosphere processes. Paleoceanographic and Paleoclimate studies enable us to use the past in order to gain information on possible future climatic and biotic developments: the past is the key to the future, just as much and maybe more than the present is the key to the past.