Srishti, Khushi Khandelwal, Aditya Kumar, A. Sinhamahapatra
{"title":"Progress on TiO2-based materials for solar water interfacial evaporation","authors":"Srishti, Khushi Khandelwal, Aditya Kumar, A. Sinhamahapatra","doi":"10.3389/fceng.2022.1046019","DOIUrl":null,"url":null,"abstract":"Solar water interfacial evaporation (SWIE) has attracted much attention for harvesting clean water. Over the last few decades, researchers have developed an innovative photo-thermal material for high-performance solar water interfacial evaporation. For higher evaporation performance, TiO2-based materials gain attention as a promising photo-thermal material due to their light absorption capacity. This study compared conceptual designs of TiO2-based materials for SWIE. Structural design and engineering strategies for improving evaporation rates and higher thermal conversion efficiency were reviewed. In addition, the material’s thermal stability and heat management were analyzed. This review provides an overview of the current advances in photo-thermal TiO2 materials to motivate research and translation efforts from the laboratory to large-scale solar water clean water production. Additional benefits of TiO2 materials on solar water interfacial evaporation should be investigated beyond containers to solve interconnected water, environmental, and energy progression.","PeriodicalId":73073,"journal":{"name":"Frontiers in chemical engineering","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in chemical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fceng.2022.1046019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Solar water interfacial evaporation (SWIE) has attracted much attention for harvesting clean water. Over the last few decades, researchers have developed an innovative photo-thermal material for high-performance solar water interfacial evaporation. For higher evaporation performance, TiO2-based materials gain attention as a promising photo-thermal material due to their light absorption capacity. This study compared conceptual designs of TiO2-based materials for SWIE. Structural design and engineering strategies for improving evaporation rates and higher thermal conversion efficiency were reviewed. In addition, the material’s thermal stability and heat management were analyzed. This review provides an overview of the current advances in photo-thermal TiO2 materials to motivate research and translation efforts from the laboratory to large-scale solar water clean water production. Additional benefits of TiO2 materials on solar water interfacial evaporation should be investigated beyond containers to solve interconnected water, environmental, and energy progression.