A projected Newton-like inertial dynamics for modeling day-to-day traffic evolution with elastic demand

IF 3.1 2区 工程技术 Q2 TRANSPORTATION Transportmetrica A-Transport Science Pub Date : 2025-01-02 DOI:10.1080/23249935.2023.2226245
Renxin Zhong , Xin-an Li , Qingnan Liang , Zhibin Chen , Tianlu Pan
{"title":"A projected Newton-like inertial dynamics for modeling day-to-day traffic evolution with elastic demand","authors":"Renxin Zhong ,&nbsp;Xin-an Li ,&nbsp;Qingnan Liang ,&nbsp;Zhibin Chen ,&nbsp;Tianlu Pan","doi":"10.1080/23249935.2023.2226245","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a projected Newton-like inertial dynamics for modeling second-order day-to-day (DTD) traffic evolution with elastic travel demand. The proposed DTD model describes double dynamics of traffic flow and travel cost based on a class of second-order gradient-like dissipative dynamic systems. We use the projection operator to prevent the existence of negative flow, which is regarded as a major pitfall of the existing second-order DTD traffic models. To our knowledge, this would be the first attempt to address the problem of negative flow in the second-order DTD traffic models. Meanwhile, we show that the proposed model inherits the properties of Newton-like inertial dynamics and behaves similarly to the existing second-order DTD models. The proposed model admits a Hessian-driven component, which is closely related to the congestion externality associated with the marginal link travel cost. The proposed model also extends the existing second-order DTD models from the fixed demand case to the elastic demand case. We characterize several theoretical properties of the proposed projected second-order DTD model, such as the equivalence between its fixed points and the user equilibrium with elastic demand, the convergence of the DTD traffic evolution process, and the stability analysis with different stability concepts. We show that the proposed model can be reduced to the well-known network tatonnement model. Finally, we demonstrate the properties of the projected second-order DTD model via numerical examples.</div></div>","PeriodicalId":48871,"journal":{"name":"Transportmetrica A-Transport Science","volume":"21 1","pages":"Pages 101-129"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportmetrica A-Transport Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2324993523002014","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a projected Newton-like inertial dynamics for modeling second-order day-to-day (DTD) traffic evolution with elastic travel demand. The proposed DTD model describes double dynamics of traffic flow and travel cost based on a class of second-order gradient-like dissipative dynamic systems. We use the projection operator to prevent the existence of negative flow, which is regarded as a major pitfall of the existing second-order DTD traffic models. To our knowledge, this would be the first attempt to address the problem of negative flow in the second-order DTD traffic models. Meanwhile, we show that the proposed model inherits the properties of Newton-like inertial dynamics and behaves similarly to the existing second-order DTD models. The proposed model admits a Hessian-driven component, which is closely related to the congestion externality associated with the marginal link travel cost. The proposed model also extends the existing second-order DTD models from the fixed demand case to the elastic demand case. We characterize several theoretical properties of the proposed projected second-order DTD model, such as the equivalence between its fixed points and the user equilibrium with elastic demand, the convergence of the DTD traffic evolution process, and the stability analysis with different stability concepts. We show that the proposed model can be reduced to the well-known network tatonnement model. Finally, we demonstrate the properties of the projected second-order DTD model via numerical examples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟具有弹性需求的日常交通演化的投影类牛顿惯性动力学
本文提出了一种投影类牛顿惯性动力学模型,用于模拟具有弹性出行需求的二阶日常交通演化。提出的DTD模型基于一类二阶类梯度耗散动态系统,描述了交通流和出行成本的双重动态。我们使用投影算子来防止负流的存在,这被认为是现有二阶DTD流量模型的一个主要缺陷。据我们所知,这将是在二阶DTD流量模型中解决负流问题的第一次尝试。同时,我们证明了所提出的模型继承了类牛顿惯性动力学的特性,并且与现有的二阶DTD模型相似。该模型考虑了与边际线路出行成本相关的拥堵外部性密切相关的黑森驱动因素。该模型还将现有的二阶DTD模型从固定需求情况扩展到弹性需求情况。本文对所提出的投影二阶DTD模型的几个理论性质进行了刻画,如其不动点与具有弹性需求的用户平衡点之间的等价性、DTD流量演化过程的收敛性以及不同稳定性概念下的稳定性分析。我们证明了所提出的模型可以简化为众所周知的网络控制模型。最后,通过数值算例证明了投影二阶DTD模型的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Transportmetrica A-Transport Science
Transportmetrica A-Transport Science TRANSPORTATION SCIENCE & TECHNOLOGY-
CiteScore
8.10
自引率
12.10%
发文量
55
期刊介绍: Transportmetrica A provides a forum for original discourse in transport science. The international journal''s focus is on the scientific approach to transport research methodology and empirical analysis of moving people and goods. Papers related to all aspects of transportation are welcome. A rigorous peer review that involves editor screening and anonymous refereeing for submitted articles facilitates quality output.
期刊最新文献
An efficient hyperpath-based algorithm for the capacitated transit equilibrium assignment problem An improved alternating direction method of multipliers for solving deterministic user equilibrium Headway regularity as an attribute for classifying bus drivers In loving memory of Professor Richard Allsop: a great loss to HKSTS and the transportation community A synchronization-constraints-based dual bands method of traffic signal optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1