A projected Newton-like inertial dynamics for modeling day-to-day traffic evolution with elastic demand

IF 3.6 2区 工程技术 Q2 TRANSPORTATION Transportmetrica A-Transport Science Pub Date : 2025-01-02 DOI:10.1080/23249935.2023.2226245
Renxin Zhong , Xin-an Li , Qingnan Liang , Zhibin Chen , Tianlu Pan
{"title":"A projected Newton-like inertial dynamics for modeling day-to-day traffic evolution with elastic demand","authors":"Renxin Zhong ,&nbsp;Xin-an Li ,&nbsp;Qingnan Liang ,&nbsp;Zhibin Chen ,&nbsp;Tianlu Pan","doi":"10.1080/23249935.2023.2226245","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a projected Newton-like inertial dynamics for modeling second-order day-to-day (DTD) traffic evolution with elastic travel demand. The proposed DTD model describes double dynamics of traffic flow and travel cost based on a class of second-order gradient-like dissipative dynamic systems. We use the projection operator to prevent the existence of negative flow, which is regarded as a major pitfall of the existing second-order DTD traffic models. To our knowledge, this would be the first attempt to address the problem of negative flow in the second-order DTD traffic models. Meanwhile, we show that the proposed model inherits the properties of Newton-like inertial dynamics and behaves similarly to the existing second-order DTD models. The proposed model admits a Hessian-driven component, which is closely related to the congestion externality associated with the marginal link travel cost. The proposed model also extends the existing second-order DTD models from the fixed demand case to the elastic demand case. We characterize several theoretical properties of the proposed projected second-order DTD model, such as the equivalence between its fixed points and the user equilibrium with elastic demand, the convergence of the DTD traffic evolution process, and the stability analysis with different stability concepts. We show that the proposed model can be reduced to the well-known network tatonnement model. Finally, we demonstrate the properties of the projected second-order DTD model via numerical examples.</div></div>","PeriodicalId":48871,"journal":{"name":"Transportmetrica A-Transport Science","volume":"21 1","pages":"Pages 101-129"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportmetrica A-Transport Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2324993523002014","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a projected Newton-like inertial dynamics for modeling second-order day-to-day (DTD) traffic evolution with elastic travel demand. The proposed DTD model describes double dynamics of traffic flow and travel cost based on a class of second-order gradient-like dissipative dynamic systems. We use the projection operator to prevent the existence of negative flow, which is regarded as a major pitfall of the existing second-order DTD traffic models. To our knowledge, this would be the first attempt to address the problem of negative flow in the second-order DTD traffic models. Meanwhile, we show that the proposed model inherits the properties of Newton-like inertial dynamics and behaves similarly to the existing second-order DTD models. The proposed model admits a Hessian-driven component, which is closely related to the congestion externality associated with the marginal link travel cost. The proposed model also extends the existing second-order DTD models from the fixed demand case to the elastic demand case. We characterize several theoretical properties of the proposed projected second-order DTD model, such as the equivalence between its fixed points and the user equilibrium with elastic demand, the convergence of the DTD traffic evolution process, and the stability analysis with different stability concepts. We show that the proposed model can be reduced to the well-known network tatonnement model. Finally, we demonstrate the properties of the projected second-order DTD model via numerical examples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟具有弹性需求的日常交通演化的投影类牛顿惯性动力学
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Transportmetrica A-Transport Science
Transportmetrica A-Transport Science TRANSPORTATION SCIENCE & TECHNOLOGY-
CiteScore
8.10
自引率
12.10%
发文量
55
期刊介绍: Transportmetrica A provides a forum for original discourse in transport science. The international journal''s focus is on the scientific approach to transport research methodology and empirical analysis of moving people and goods. Papers related to all aspects of transportation are welcome. A rigorous peer review that involves editor screening and anonymous refereeing for submitted articles facilitates quality output.
期刊最新文献
Quality of service measurement for electric vehicle fast charging stations: a new evaluation model under uncertainties Estimation of stochastic link capacity and link performance function including uncertainty of driver’s behaviour Traffic efficiency and fairness optimisation for autonomous intersection management based on reinforcement learning A novel hybrid deep learning model with ARIMA Conv-LSTM networks and shuffle attention layer for short-term traffic flow prediction Bimodal transit design with heterogeneous demand elasticity under different fare structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1