T. Varol, O. Güler, Serhatcan Berk Akçay, Hüseyin Can Aksa
{"title":"Novel advanced copper-silver materials produced from recycled dendritic copper powders using electroless coating and hot pressing","authors":"T. Varol, O. Güler, Serhatcan Berk Akçay, Hüseyin Can Aksa","doi":"10.1080/00325899.2022.2026031","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this study, copper powders with dendritic morphology were produced by the electrolysis method, and then silver coating was applied to these powders by an electroless coating method. The bulk samples were fabricated by hot pressing method using different ratios of copper and silver-plated copper powders. The results showed that the electroless silver coating layer provided a strong bond at the particle boundaries of the samples, significantly improving the physical and mechanical properties of the materials. Accordingly, the hardness, tensile strength, electrical and thermal conductivity values of the samples produced from silver-plated dendritic copper particles were determined to be approximately 98 HB, 185 MPa, 102 IACS% and 402 W mK−1, respectively. In addition, the oxidation resistance of the sample produced from completely silver-coated copper powders is 4 times higher than that of pure copper.","PeriodicalId":20392,"journal":{"name":"Powder Metallurgy","volume":"65 1","pages":"390 - 402"},"PeriodicalIF":1.9000,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/00325899.2022.2026031","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 2
Abstract
ABSTRACT In this study, copper powders with dendritic morphology were produced by the electrolysis method, and then silver coating was applied to these powders by an electroless coating method. The bulk samples were fabricated by hot pressing method using different ratios of copper and silver-plated copper powders. The results showed that the electroless silver coating layer provided a strong bond at the particle boundaries of the samples, significantly improving the physical and mechanical properties of the materials. Accordingly, the hardness, tensile strength, electrical and thermal conductivity values of the samples produced from silver-plated dendritic copper particles were determined to be approximately 98 HB, 185 MPa, 102 IACS% and 402 W mK−1, respectively. In addition, the oxidation resistance of the sample produced from completely silver-coated copper powders is 4 times higher than that of pure copper.
期刊介绍:
Powder Metallurgy is an international journal publishing peer-reviewed original research on the science and practice of powder metallurgy and particulate technology. Coverage includes metallic particulate materials, PM tool materials, hard materials, composites, and novel powder based materials.