Holly C. Gagnon, Jeanine Stefanucci, Sarah H. Creem-Regehr, Bobby Bodenheimer
{"title":"Calibrated passability perception in virtual reality transfers to augmented reality","authors":"Holly C. Gagnon, Jeanine Stefanucci, Sarah H. Creem-Regehr, Bobby Bodenheimer","doi":"10.1145/3613450","DOIUrl":null,"url":null,"abstract":"As applications for virtual reality (VR) and augmented reality (AR) technology increase, it will be important to understand how users perceive their action capabilities in virtual environments. Feedback about actions may help to calibrate perception for action opportunities (affordances) so that action judgments in VR and AR mirror actors’ real abilities. Previous work indicates that walking through a virtual doorway while wielding an object can calibrate the perception of one’s passability through feedback from collisions. In the current study, we aimed to replicate this calibration through feedback using a different paradigm in VR while also testing whether this calibration transfers to AR. Participants held a pole at 45 degrees and made passability judgments in AR (pretest phase). Then, they made passability judgments in VR and received feedback on those judgments by walking through a virtual doorway while holding the pole (calibration phase). Participants then returned to AR to make posttest passability judgments. Results indicate that feedback calibrated participants’ judgments in VR. Moreover, this calibration transferred to the AR environment. In other words, after experiencing feedback in VR, passability judgments in VR and in AR became closer to an actor’s actual ability, which could make training applications in these technologies more effective.","PeriodicalId":50921,"journal":{"name":"ACM Transactions on Applied Perception","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Applied Perception","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3613450","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
As applications for virtual reality (VR) and augmented reality (AR) technology increase, it will be important to understand how users perceive their action capabilities in virtual environments. Feedback about actions may help to calibrate perception for action opportunities (affordances) so that action judgments in VR and AR mirror actors’ real abilities. Previous work indicates that walking through a virtual doorway while wielding an object can calibrate the perception of one’s passability through feedback from collisions. In the current study, we aimed to replicate this calibration through feedback using a different paradigm in VR while also testing whether this calibration transfers to AR. Participants held a pole at 45 degrees and made passability judgments in AR (pretest phase). Then, they made passability judgments in VR and received feedback on those judgments by walking through a virtual doorway while holding the pole (calibration phase). Participants then returned to AR to make posttest passability judgments. Results indicate that feedback calibrated participants’ judgments in VR. Moreover, this calibration transferred to the AR environment. In other words, after experiencing feedback in VR, passability judgments in VR and in AR became closer to an actor’s actual ability, which could make training applications in these technologies more effective.
期刊介绍:
ACM Transactions on Applied Perception (TAP) aims to strengthen the synergy between computer science and psychology/perception by publishing top quality papers that help to unify research in these fields.
The journal publishes inter-disciplinary research of significant and lasting value in any topic area that spans both Computer Science and Perceptual Psychology. All papers must incorporate both perceptual and computer science components.