I. Dunkl, N. Lovenduski, Alessio Collalti, V. Arora, T. Ilyina, V. Brovkin
{"title":"Gross primary productivity and the predictability of CO2: more uncertainty in what we predict than how well we predict it","authors":"I. Dunkl, N. Lovenduski, Alessio Collalti, V. Arora, T. Ilyina, V. Brovkin","doi":"10.5194/bg-20-3523-2023","DOIUrl":null,"url":null,"abstract":"Abstract. The prediction of atmospheric CO2 concentrations is limited by the high interannual variability (IAV) in terrestrial gross primary\nproductivity (GPP). However, there are large uncertainties in the drivers of GPP IAV among Earth system models (ESMs). Here, we evaluate the impact\nof these uncertainties on the predictability of atmospheric CO2 in six ESMs. We use regression analysis to determine the role of\nenvironmental drivers in (i) the patterns of GPP IAV and (ii) the predictability of GPP. There are large uncertainties in the spatial distribution\nof GPP IAV. Although all ESMs agree on the high IAV in the tropics, several ESMs have unique hotspots of GPP IAV. The main driver of GPP IAV is\ntemperature in the ESMs using the Community Land Model, whereas it is soil moisture in the ESM developed by the Institute Pierre Simon Laplace (IPSL-CM6A-LR) and in the low-resolution configuration of the Max Planck Earth System Model (MPI-ESM-LR), revealing underlying differences in the\nsource of GPP IAV among ESMs. Between 13 % and 24 % of the GPP IAV is predictable 1 year ahead, with four out of six ESMs showing values of between 19 %\nand 24 %. Up to 32 % of the GPP IAV induced by soil moisture is predictable, whereas only 7 % to 13 % of the GPP IAV induced by\nradiation is predictable. The results show that, while ESMs are fairly similar in their ability to predict their own carbon flux variability, these predicted contributions to the atmospheric CO2 variability originate from different regions and are caused by different drivers. A higher coherence in atmospheric\nCO2 predictability could be achieved by reducing uncertainties in the GPP sensitivity to soil moisture and by accurate observational products\nfor GPP IAV.\n","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/bg-20-3523-2023","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. The prediction of atmospheric CO2 concentrations is limited by the high interannual variability (IAV) in terrestrial gross primary
productivity (GPP). However, there are large uncertainties in the drivers of GPP IAV among Earth system models (ESMs). Here, we evaluate the impact
of these uncertainties on the predictability of atmospheric CO2 in six ESMs. We use regression analysis to determine the role of
environmental drivers in (i) the patterns of GPP IAV and (ii) the predictability of GPP. There are large uncertainties in the spatial distribution
of GPP IAV. Although all ESMs agree on the high IAV in the tropics, several ESMs have unique hotspots of GPP IAV. The main driver of GPP IAV is
temperature in the ESMs using the Community Land Model, whereas it is soil moisture in the ESM developed by the Institute Pierre Simon Laplace (IPSL-CM6A-LR) and in the low-resolution configuration of the Max Planck Earth System Model (MPI-ESM-LR), revealing underlying differences in the
source of GPP IAV among ESMs. Between 13 % and 24 % of the GPP IAV is predictable 1 year ahead, with four out of six ESMs showing values of between 19 %
and 24 %. Up to 32 % of the GPP IAV induced by soil moisture is predictable, whereas only 7 % to 13 % of the GPP IAV induced by
radiation is predictable. The results show that, while ESMs are fairly similar in their ability to predict their own carbon flux variability, these predicted contributions to the atmospheric CO2 variability originate from different regions and are caused by different drivers. A higher coherence in atmospheric
CO2 predictability could be achieved by reducing uncertainties in the GPP sensitivity to soil moisture and by accurate observational products
for GPP IAV.
期刊介绍:
Biogeosciences (BG) is an international scientific journal dedicated to the publication and discussion of research articles, short communications and review papers on all aspects of the interactions between the biological, chemical and physical processes in terrestrial or extraterrestrial life with the geosphere, hydrosphere and atmosphere. The objective of the journal is to cut across the boundaries of established sciences and achieve an interdisciplinary view of these interactions. Experimental, conceptual and modelling approaches are welcome.