Lars-Hendrik Daus, B. Schartel, V. Wachtendorf, R. Mangelsdorf, M. Korzen
{"title":"A chain is no stronger than its weakest link: Weathering resistance of water-based intumescent coatings for steel applications","authors":"Lars-Hendrik Daus, B. Schartel, V. Wachtendorf, R. Mangelsdorf, M. Korzen","doi":"10.1177/0734904120961064","DOIUrl":null,"url":null,"abstract":"A systematic approach was used to investigate the weathering-induced degradation of a common water–based intumescent coating. In this study, the coatings are intended for humid indoor applications on steel substrates. The coating contains ammonium polyphosphate, pentaerythritol, melamine, and polyvinyl acetate. By replacing each ingredient with a less water-soluble substance, the most vulnerable substances, polyvinyl acetate and pentaerythritol, were identified. Furthermore, the weathering resistance of the system was improved by exchanging the ingredients. The coatings were stressed by artificial weathering tests and evaluated by fire tests. Thermogravimetry and Fourier-transform infrared spectroscopy were used to study the thermal decomposition. This study lays the foundation for the development of a new generation of water-based intumescent coatings.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0734904120961064","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fire Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0734904120961064","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8
Abstract
A systematic approach was used to investigate the weathering-induced degradation of a common water–based intumescent coating. In this study, the coatings are intended for humid indoor applications on steel substrates. The coating contains ammonium polyphosphate, pentaerythritol, melamine, and polyvinyl acetate. By replacing each ingredient with a less water-soluble substance, the most vulnerable substances, polyvinyl acetate and pentaerythritol, were identified. Furthermore, the weathering resistance of the system was improved by exchanging the ingredients. The coatings were stressed by artificial weathering tests and evaluated by fire tests. Thermogravimetry and Fourier-transform infrared spectroscopy were used to study the thermal decomposition. This study lays the foundation for the development of a new generation of water-based intumescent coatings.
期刊介绍:
The Journal of Fire Sciences is a leading journal for the reporting of significant fundamental and applied research that brings understanding of fire chemistry and fire physics to fire safety. Its content is aimed toward the prevention and mitigation of the adverse effects of fires involving combustible materials, as well as development of new tools to better address fire safety needs. The Journal of Fire Sciences covers experimental or theoretical studies of fire initiation and growth, flame retardant chemistry, fire physics relative to material behavior, fire containment, fire threat to people and the environment and fire safety engineering. This journal is a member of the Committee on Publication Ethics (COPE).